Skip to main navigation menu Skip to main content Skip to site footer

Vol. 11 No. 6 (2012)

Articles

EFFECT OF DIFFERENT GROWING SUBSTRATES ON THE PHOTOSYNTHESIS PARAMETERS AND FRUIT YIELD OF GREENHOUSE-GROWN TOMATO

Submitted: December 31, 2020
Published: 2012-12-31

Abstract

In the period 2009–2011, a study was conducted in a greenhouse, using fertigation, to determine the photosynthetic activity of leaves and tomato fruit yield of plants grown on different substrates. The plants were grown on rockwool slabs, 15 dm3 in volume, and slabs of the same volume made of the following straw chaff: rape straw; rape straw + peat (3:1); rape straw + pine bark (3:1); triticale straw; triticale straw + peat (3:1), triticale straw + pine bark (3:1). Two tomato plants were grown on each slab, leaving 22 fruit clusters on each plant during the period from February to October. The obtained results showed that photosynthetic pigment content, chlorophyll fluorescence, rate of photosynthesis and substomatal CO2 concentration in the leaves of tomato grown on rockwool and on rape or triticale straw chaff substrates did not differ statistically significantly. No significant differences were found in total yield of tomato fruits. Peat or pine bark addition
to the rape or triticale straw substrates had no significant effect on the change in their usefulness. The substrates used differed only in the content of total phenolic compounds after tomato harvest. The substrates prepared from triticale straw and its mixture with peat and bark as well as from rape straw with bark were characterized by a higher level of phenolic compounds than the other substrates. In the opinion of the present authors, substrates of rape or triticale straw alone, and even more so with the addition of peat or pine bark are not inferior in any way to commonly used rockwool.

References

Arnon D.J., 1949. Cooper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.
Babik J., 2006. Podłoża organiczne do uprawy ogórka szklarniowego alternatywne dla wełny mineralnej. Acta Agrophysica, 7 (4), 809–820.
Benoit F., Ceustermans N., 1989. Growing tomatoes on recycled polyuretane. Soilless Culture 5(2), 3–10.
Bjӧrkman O., Demming B., 1987. Photon yield of O2 – evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170, 489–504.
Blamowski Z.K., Borowski E., Paczos K., 2001. Wpływ egzogennej spermidyny na rośliny ogórka (Cucumis sativus L.) rosnące w warunkach suszy. Acta Agrobot. 54, 1, 5–16.
Borowski E., Nurzyński J., Michałojć Z., 2000. Reaction of glasshouse tomato on potassium chloride or sulphate fertilization on various substrates. Annales UMCS, EEE, VIII, 1–9.
Borowski E., Nurzyński J., 2007. Photosynthetic activity of leaves and tomato fruit yield in growing on substrates of cereal straw and its mixtures with other organic substances. Electronic J. Polish Agric. Univ. 10, 2.
Britton G., 1985. General carotenoid methods. Methods Enzymol. 111, 113–114.
Cechin J., 1998. Photosynthesis and chlorophyll fluorescences to hybrids of sorghum under different nitrogen and water regimes. Photosynthetica 35, 2, 233–240.
Chochura P., Komosa A., 2000. Plonowanie i stan odżywienia pomidora szklarniowego uprawianego w podłożach inertnych. Annales UMSC, EEE, VIII, 283–288.
Congming L, Zhang J., 1998. Effect of water stress on photosynthesis chlorophyll fluorescence and photoinhibition in wheat plants. Aust. J. Plant Physiol. 25, 883–892.
Kowalczyk W., Dyśko J., 2006. Ocena stanu odżywienia azotem pomidora szklarniowego uprawianego w słomie żytniej. Acta Agrophys. 7(4), 959–967.
Largué-Saaverda A., 1979. Stomatal closure in response to acetylsalicylic acid treatment. Z. Planzenphysiol 93, 371–375.
Lichtenthaler H.K., Miehé J.A., 1997. Fluorescence imaging as a diagnostic tool for plant stress. Elsevier Sci. 2, 8, 316–320.
Nurzyński J., 2006. Plonowanie i skład chemiczny pomidora uprawianego w szklarni w podłożach ekologicznych. Acta Agrophysica, 7(3), 681–690.
Politycka B., Wójcik-Wojtkowiak D., 1988. Substancje fitotoksyczne jako przyczyna zmęczenia podłoży użytkowanych w wielokrotnej uprawie ogórka. Roczniki AR w Poznaniu, 189, 147–157.
Politycka B., Wójcik-Wojtkowiak D., 1991. Response of sweet pepper to phenols accumulated in greenhouse substrate. Plant and Soil 135, 275–282.
Politycka B., Adamska D., 2003. Release of phenolic compounds from apple residues decomposing in soil and the influence of temperature on their degradation. Polish J. Envir. Stud. 12, 1, 95–98.
Rocznik statystyczny. 2009. GUS Warszawa, 70–74.
Sánchez-Rodriguez J., Pérez P., Martinez-Carrasco R. 1999. Photosynthesis, carbohydrate levels and chlorophyll fluorescence – estimated intercellular CO2 in water – stressed Casurina equisetifolia Forst. Plant Cell Environ. 22, 867–873.
Schreiber U., Biliger W., Neubauer C., 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiol. Photosynth. Springer-Verleg, Berlin, 49–70.
Swain T., Hillis W.E., 1959. The phenolic constituents of Prunus domestica T. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1, 63–68.
Stępowska A., Nowak J.S., 2006. Zastosowanie substratów słomiastych do poplonowej uprawy sałaty masłowej. Acta Agrophysica, 7(4), 1003–1014.
Turski R., Hetman J., Słowińska-Jurkiewicz A., 1980. Podłoża stosowane w ogrodnictwie szklarniowym. Rocz. Nauk. Rol. Seria D., 180, 87.
Wajahatullah K., Balakrishanan P., Smith D.L., 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160, 485–492.
Zeng R.S., Lou S.M., Shi Y.H., Shi M.B., Tu C.Y., 2001. Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron. J. 93, 72–79.

Downloads

Download data is not yet available.

Most read articles by the same author(s)