Skip to main navigation menu Skip to main content Skip to site footer

Vol. 9 No. 3 (2010)

Articles

SPATIAL AND TEMPORAL VARIABILITY OF THE OCCURRENCE OF GROUND FROST IN POLAND AND ITS EFFECT ON GROWTH, DEVELOPMENT AND YIELD OF PICKLING CUCUMBER (Cucumis sativus L.), 1966–2005

Submitted: January 20, 2021
Published: 2010-09-30

Abstract

In the world of plants frost is a particularly dangerous phenomenon. Destructive effect of frost on plants is both direct and secondary. The amount of damage done by frost depends on its intensity, frequency, a season of its occurrence and a plant species. The aim of the work was to find spatial and temporal distribution of ground frost in Poland and to determine effect of minimum air temperature at the ground level on the dates of phenological phases and harvesting and duration of development stages and also on the quantity of cucumber yield of pickling cultivars at the turn of the 20th and 21st centuries. Source materials used in the present study were collected from 28 experimental stations of COBORU and from 51 meteorological stations of IMGW in the years 1966–2005. Ground frost was characterised, e.g., by means of average dates of last spring and first autumn frost, duration of the period without frost and also intensity and frequency of its occurrence and a linear trend. Effect of minimum air temperature at the ground level on the growth, development and crop productivity of cucumber was determined with the use of linear and curvilinear regression analysis and the linear trend of occurrence of last spring and first autumn frost and duration of the period without frost with the use of linear regression analysis. Ground frost poses high potential risk for field cultivation of cucumber in Poland not only because of the fact that it significantly determines the rate of growth, development and yield quantity of the plant but also because of its high spatial and temporal
variability; the highest cultivation risk occurs in north-eastern Poland where significant shortening, year by year, of the period without frost was proved and where the highest frequency of frost occurrence both at the beginning and at the end of the cucumber growing season is recorded.

References

Akinci S., Abak K., 1999. Determination of a suitable formula for the calculation of sum growing degree days in cucumber. Acta Hort. (ISHS), 492, 273–280.
Babik I., 2004. Ekologiczne metody uprawy ogórka. Congress Center of Ecological Agriculture.
Bittsánszky J., Hamar N., Milotay P., Kristóf E., 1990. 100 day harvest period in pickling cucumber production in Hungary. Acta Hort. (ISHS), 267, 145–150.
Bokwa A., Matuszyk K., 2005. Występowanie zjawisk atmosferycznych niekorzystnych dla rolnictwa na Pogórzu Wielickim. Woda Środ. Obsz. Wiej., 5(14), 57–68.
Brázdil R., Budíková M., Faško P., Lapin M., 1995. Fluctuation of maximum and minimum air temperatures in the Czech and the Slovak Republics. Atmos. Res., 37, 53–65.
Castellanos M.T., Tarquis A.M. Morató M.C., Saa A., 2009. Forecast of frost days based on monthly temperatures. Span. J. Agric. Res., 7(3), 513–524.
Cittadini E.D., De Ridder N., Peri P.L., Van Keulen H., 2006. A method for assessing frost damage risk in sweet cherry orchards of South Patagonia. Agri. For. Meteorol., 141, 235–243.
Dίaz D.P., Martίnez A.T., 1993. On simulation of air temperature curve near the ground in presence of frosts in Valley of Perote (Mexico). Int. J. Biometeorol., 37, 101–103.
Dobosz M., 2001. Wspomagana komputerowo statystyczna analiza wyników badań. Wyd. EXIT. Warszawa.
Dragańska E., Rynkiewicz I., Panfil M., 2004. Częstotliwość i intensywność występowania przymrozków w Polsce północno-wschodniej w latach 1971–2000. Acta Agrophysica, 3(1), 35–41.
Eccel E., Rea R., Caffarra A., Crisci A., 2009. Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation. Int. J. Biometeorol., 53, 273–286.
Feliksik E., Wilczyński S., 2009. The effect of climate on tree-ring chronologies of native and nonnative tree species growing under homogenous site conditions. Geochronometria, 33, 49–57.
Fletcher A.L., Moot D.J., 2006. Phenological development and frost risk of 'challenger' sweet corn (Zea mays) in response to phosphorus. New Zeal. J. Crop Hort. Sci., 34 (4), 393–402.
Gołaszewski D., 2004. Stratyfikacja termiczna w przygruntowej warstwie powietrza w wiosenne noce przymrozkowe na stacji SGGW Ursynów. Acta Agrophysica, 3, 247–255.
Górka W., 1987. Bonitacja warunków agroklimatycznych Polski dla wybranych warzyw. Sprawozdanie etapowe CPBR nr 10.18. Wyd. AR Szczecin.
Grabowski J., Kawecki Z., Tomaszewska Z., 2007. Meteorological conditions of the blooming of nanking cherry (Prunus tomentosa Thunb.) and their impact on the yield. Fol. Hort., 19, 45–52.
Han S.J., Goodings D.J., 2006. Practical model of frost heave in clay. J. Geotech. Geoenviron. Eng., 132(1), 92–101.
Ingratta F., 1980. Reducing night temperature by soil warming. Greenhouse Veg. News. Ontario Ministry of Agriculture and Food.
Kalbarczyk R., 2006. Time and spatial distribution of agrotechnical dates and phenological stages of cucumber in western Poland. Acta Sci. Pol., Hortorum Cultus, 5 (2), 51–68.
Kalbarczyk R., 2009a. Air temperature changes and phenological phases of field cucumber (Cucumis sativus L.) in Poland, 1966–2005. Hort. Sci., 36(2), 75–83.
Kalbarczyk R., 2009b. Use of Cluster analysis in the determination of the influence of agrotechnical dates and phenological phases on field Cucumber (Cucumis sativus L.). Acta Sci. Pol., Hortorum Cultus, 8(1), 63–75.
Kołodziej J., Liniewicz K., Bednarek H., 2004. Temperatura powietrza w dniach „zimnych świętych” w okolicy Lublina. Annales UMCS, Sec. E., 59(2), 857–867.
Koźmiński Cz., 1976. Występowanie ciągów dni przymrozkowych w okresie wegetacyjnym na terenie Polski. Prz. Geogr., 48(1), 75–93.
Koźmiński Cz., Trzeciak S., 1971. Przestrzenny i czasowy rozkład przymrozków wiosenno-jesiennych na obszarze Polski. Prz. Geogr., 4, 523–549.
Koźmiński Cz., Weber M., 1969. Prawdopodobieństwo wystepowania przymrozków w Polsce na przykładzie wybranych stacji meteorologicznych. Biul. Warzywniczy, 9, 155–163.
Koźmiński Cz., Górski T., Michalska B. (eds), 1990. Atlas klimatyczny elementów i zjawisk szkodliwych dla rolnictwa. Wyd. IUNG Puławy, AR Szczecin.
Koźmiński Cz., Michalska B. (eds), 2001. Atlas klimatycznego ryzyka uprawy roślin w Polsce. Wyd. AR Szczecin.
Krug H., Thiel F., 1985. Effect of soil temperature on growth of cucumber in different air temperature and radiation regime – poster. Acta Hort. (ISHS), 156, 117–126.
Lederle E., Krug H., 1985. Model experiments for energy saving temperature control for germinating cucumbers. Acta Hort. (ISHS), 156, 105–116.
Liebig H.P., 1985. Model of cucumber growth and yield. I. Raising the crop under low temperature regimes. Acta Hort. (ISHS), 156, 127–138.
Lindkvist L., Lindqvist S., 1997. Spatial and temporal variability of nocturnal summer frost in elevated complex terrain. Agri. For. Meteorol., 87, 139–153.
Loginov V.F., Mikutskii V.S., Kuznetsov G.P., 2007. Statistical and probability analysis of frosts in Belarus. Russ. Meteorol. Hydrol., 32(10), 651–657.
Madelin M., Beltrando G., 2005. Spatial interpolation-based mapping of the spring frost hazard in the Champagne vineyards. Meteorol. Appl., 12, 51–56.
Maqbool A., Shafiq S., Lake L., 2009. Radiant frost tolerance in pulse crops – a review. Euphytica, 172, 1–12.
Marcelis L.F.M., Hofman-Eijer L.R.B., 1993. Effect of temperature on the growth of individual cucumber fruits. Physiol. Plantarum, 87(3), 321–328.
Medany M.A., Wadid M.M., Abou-Hadid A.F., 1999. Cucumber fruit growth rate in relation to climate. Acta Hort. (ISHS), 491, 107–112.
Peck L., 1996. Temporal and spatial fluctuations in ground cover surface temperature at a Northern New England site. Atmos. Res., 41(2), 131–160.
Prabha T., Hoogenboom G., 2008. Evaluation of the weather research and forecasting model for two frost events. Comput. Electron. Agri., 64, 234–247.
Sokołowska J., 1980. Pojawy fenologiczne świata roślinnego w Polsce. Wyd. IMGW, Warszawa.
Yang D., Goodings D.J., 1998. Predicting frost heave using FROST model with centrifuge models. J. Cold Regions Eng., 12(2), 64–83.
Yoshida S., Kitano M., Eguchi H., 1998. Growth of cucumber plants (Cucumbis sativus L.) under diurnal control of air temperature. Biotronics, 27, 97–102.
Wilczyński S., Durło G., Feliksik E., 2005. Przymrozki wczesne i późne na Kopciowej (Beskid Sądecki) w latach 1971–2000. Acta Agr. Silv., ser. Silv., 43, 65–76.

Downloads

Download data is not yet available.