Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 6 (2022)

Articles

Effect of biologically active TotalHumus® and Bacterbase on the growth ex vitro of strawberry, blueberry and hip rose microcuttings

DOI: https://doi.org/10.24326/asphc.2022.6.1
Submitted: October 7, 2021
Published: 2022-12-30

Abstract

One of the key steps in plant micropropagation is rooting and acclimatization of microcuttings. The aim of the study was to investigate the suitability of commercial biopreparations, TotalHumus® and Bacterbase, to stimulate the growth of young fruit plants derived from in vitro propagation. TotalHumus® is made from brown coal. Bacterbase is a bacterial preparation containing Bacillus velezensis and Bacillus amyloliqefaciens (Skierniewickie Microorganisms) with antifungal properties that stimulates the growth and yielding of plants. Unrooted microshoots of strawberry ‘Grandarosaʼ and highbush blueberry ‘Chandlerʼ, and rooted in vitro microcuttings of hip rose ‘Konstancinʼ were planted in a peat substrate. Three weeks after planting ex vitro, the plants were treated with the biopreparations. Four times, at two-week intervals, the plants were drenched and simultaneously sprayed with mineral fertilizer 0.2% Hydrovit (control), 0.04% TotalHumus® and 0.03% Bacterbase, which were used separately or in combinations. In hip rose and strawberry, compared to the control, similar or better growth parameters of shoots and roots were observed after the use of TotalHumus® and/or Bacterbase. The plants were characterized by the highest fresh weight, longer shoots/runners and more shoots than in the control (mineral fertilization). In strawberry, root parameters were significantly improved by TotalHumus®, and in rose by Bacterbase. The use of both TotalHumus® and Bacterbase separately or in combination significantly reduced the occurrence of symptoms of rose leaf infection with powdery mildew. The biopreparations had no effect on highbush blueberry.

References

  1. Abdullah, M.T., Ali, N.Y., Suleman, P. (2008). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. J. Crop Prot., 27(10), 1354–1359. https://doi.org/10.1016/j.cropro.2008.05.007 DOI: https://doi.org/10.1016/j.cropro.2008.05.007
  2. Cai, X.C., Liu, C.H., Wang, B.T., Xue, Y.R. (2017). Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiol. Res., 196, 89–94. https://doi.org/10.1016/j.micres.2016.12.007 DOI: https://doi.org/10.1016/j.micres.2016.12.007
  3. Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, P., Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic., 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013 DOI: https://doi.org/10.1016/j.scienta.2015.09.013
  4. Chandra, S., Bandopadhyay, R., Kumar, V., Chandra, R. (2010). Acclimatization of tissue cultured plantlets: from laboratory to land. Biotech. Letters, 32(9), 1199–1205. https://doi.org/10.1007/s10529-010-0290-0 DOI: https://doi.org/10.1007/s10529-010-0290-0
  5. Chen, Y., Clapp, C.E., Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr., 50(7), 1089–1095. https://doi.org/10.1080/00380768.2004.10408579 DOI: https://doi.org/10.1080/00380768.2004.10408579
  6. Chowdhury, S.P., Hartmann, A., Gao, X., Borriss, R. (2015). Biocontrol mechanism by rootassociated Bacillus amyloliquefaciens FZB42 – a review. Front. Microbiol., 6, 780. https://doi.org/10.3389/fmicb.2015.00780 DOI: https://doi.org/10.3389/fmicb.2015.00780
  7. Derkowska, E., Sas-Paszt, L., Trzciński, P., Przybył, M., Weszczak, K. (2015). Influence of biofertilizers on plant growth and rhizosphere microbiology of greenhouse grown strawberry cultivars. Acta Sci. Pol. Hortorum Cultus, 14(6), 83–96.
  8. Derkowska, E., Sas-Paszt, L., Dyki, B., Sumorok, B. (2015). Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Adv. Microbiol., 5(1), 54–64. DOI: https://doi.org/10.4236/aim.2015.51006
  9. Dunlap, C.A., Kim, S.J., Kwon, S.W., Rooney, A.P. (2016). Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol., 66(3), 1212–1217. https://doi.org/10.1099/ijsem.0.000858 DOI: https://doi.org/10.1099/ijsem.0.000858
  10. Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol., 9, 2491. https://doi.org/10.3389/fmicb.2018.02491 DOI: https://doi.org/10.3389/fmicb.2018.02491
  11. Gosal, S.K., Karlupia, A., Gosal, S.S., Chhibba, I.M., Varma, A. (2010). Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J. Biotechnol., 9(3), 289–297.
  12. Ji, S.H., Paul, N.C., Deng, J.X., Kim, Y.S., Yun, B.S., Yu, S.H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 41(4), 234–242. https://doi.org/10.5941/MYCO.2013.41.4.234 DOI: https://doi.org/10.5941/MYCO.2013.41.4.234
  13. Kanani, P., Modi, A., Kumar, A. (2020). Biotization of endophytes in micropropagation: A helpful enemy. In: Series in Food Science, Technology and Nutrition, Microbial Endophytes, Kumar, A., Kumar Singh, V. (eds.). Woodhead Publishing, Elsevier, The Neth-erlands, 357–379. https://doi.org/10.1016/B978-0-12-818734-0.00015-2 DOI: https://doi.org/10.1016/B978-0-12-818734-0.00015-2
  14. Myo, E.M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biol. Control, 134, 23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017 DOI: https://doi.org/10.1016/j.biocontrol.2019.03.017
  15. Nam, M.H., Park, M.S., Kim, H.G., Yoo, S.J. (2009). Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol. Biotechnol., 19(5), 520–524. https://doi.org/10.4014/jmb.0805.333 DOI: https://doi.org/10.4014/jmb.0805.333
  16. Nardi, S., Ertani, A., Francioso, O. (2017). Soil–root cross‐talking: The role of humic substances. J. Soil Sci. Plant Nutr., 180(1), 5–13. https://doi.org/10.1002/jpln.201600348 DOI: https://doi.org/10.1002/jpln.201600348
  17. Nardi, S., Pizzeghello, D., Muscolo, A., Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biol. Biochem., 34(11), 1527–1536. https://doi.org/10.1016/S0038-0717(02)00174-8 DOI: https://doi.org/10.1016/S0038-0717(02)00174-8
  18. Nowak, J. (1998). Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell. Dev. Biol. Plant, 34(2), 122–130. DOI: https://doi.org/10.1007/BF02822776
  19. Orlikowska, T., Nowak, K., Reed, B. (2017). Bacteria in the plant tissue culture environment. Plant Cell, Tiss. Organ Cult., 128(3), 487–508. https://doi.org/10.1007/s11240-016-1144-9 DOI: https://doi.org/10.1007/s11240-016-1144-9
  20. Paraszkiewicz, K., Bernat, P., Siewiera, P., Moryl, M., Sas-Paszt, L., Trzciński, P., Jałowiecki, Ł., Płaza, G. (2017). Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Sci. Hortic., 225, 802–809. https://doi.org/10.1016/j.scienta.2017.07.034 DOI: https://doi.org/10.1016/j.scienta.2017.07.034
  21. Pettit, R.E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. CTI Res., 10, 1–7.
  22. Phillips, J.M., Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 55(1), 158–161. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3
  23. Regulations (EC) No 1107/2009 of the European Parliament and Council. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107 [date of access: 21.10.2009].
  24. Sas-Paszt, L.S., Malusá, E., Sumorok, B., Canfora, L., Derkowska, E., Głuszek, S. (2015). The influence of bioproducts on mycorrhizal occurrence and diversity in the rhizosphere of strawberry plants under controlled conditions. Adv. Microbiol., 5(1), 40. http://dx.doi.org/10.4236/aim.2015.51005 DOI: https://doi.org/10.4236/aim.2015.51005
  25. Sas-Paszt, L., Głuszek, S., Derkowska, E., Sumorok, B., Lisek, J., Trzciński, P., Lisek, A., Frąc, M., Sitarek, M., Przybył, M. (2019). Occurrence of arbuscular mycorrhizal fungi in the roots of two grapevine cultivars in response to bioproducts. South Afr. J. Enol. Vit-ic., 40(1), 1–4. https://doi.org/10.21548/40-1-3115 DOI: https://doi.org/10.21548/40-1-3115
  26. Sas-Paszt, L., Sumorok, B., Grzyb, Z.S., Głuszek, S., Sitarek, M., Lisek, A., Derkowska, E., Przybył, M., Trzciński, P., Frąc, M., Górnik, K. (2020). Effect of microbiologically enriched fertilizers on the yielding of strawberry plants under field conditions in the second year of plantation. J. Res. Appl. Agric. Eng., 65(1), 31–38.
  27. Trouvelot, A., Kough, J.L., Gianinazzi-Pearson, V., (1986). Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: Physiological and Genetical Aspects of Mycorrhizae. Gianinazzi-Pearson, V., Gianinazzi, S. (eds). INRA, Paris, 217–221.
  28. Trzcinski, P., Sas-Paszt, L.M., Głuszek, S., Przybył, M., Derkowska, E. (2018). Effect of organic cultivation on the occurrence of beneficial groups of microorganisms in the rhizosphere soil of vegetable crops. J. Hortic. Res., 26(2). https://doi.org/10.2478/johr-2018-0012 DOI: https://doi.org/10.2478/johr-2018-0012
  29. Trzewik, A., Maciorowski, R., Klocke, E., Orlikowska, T. (2020a). The influence of Piriformospora indica on the resistance of two rhododendron cultivars to Phytophthora cinnamomi and P. plurivora. Biol. Control, 140, 104121. https://doi.org/10.1016/j.biocontrol.2019.104121 DOI: https://doi.org/10.1016/j.biocontrol.2019.104121
  30. Trzewik, A., Marasek-Ciolakowska, A., Orlikowska, T. (2020b). Protection of highbush blueberry plants against Phytophthora cinnamomi using Serendipita indica. Agronomy, 10(10), 1598. . https://doi.org/10.3390/agronomy10101598 DOI: https://doi.org/10.3390/agronomy10101598
  31. Trzewik, A., Orlikowska, T., Kowalczyk, W., Maciorowski, R., Marasek-Ciołakowska, A., Klocke, E. (2020c). Stimulation of ex vitro growth of Rhododendron hybrids ‘Nova Zembla’ and ‘Alfred’ by inoculation of roots with Serendipita indica. Hortic. Sci., 47(4), 194–202. https://doi.org/10.17221/7/2020-HORTSCI DOI: https://doi.org/10.17221/7/2020-HORTSCI
  32. Ulukan, H., (2008). Effect of soil applied humic acid at different sowing times on some yield components of wheat (Triticum spp.) hybrids. Int. J. Bot., 4(2), 164–175. DOI: https://doi.org/10.3923/ijb.2008.164.175
  33. Vestberg, M., Cassells, A.C., Schubert, A., Cordier, C., Gianinazzi, S. (2002). Arbuscular mycorrhizal fungi and micropropagation of high value crops. In: Mycorrhizal Technology in Agriculture, Gianinazzi, S., Schüepp, H., Barea, J.M., Haselwandter, K. (eds.). Birkhäuser, Basel, 223–233. DOI: https://doi.org/10.1007/978-3-0348-8117-3_18
  34. Wojdyła, A. (2019). Evaluation of the effectiveness of Agro-Sorb Folium and its mixtures with fungicides in the protection of roses against powdery mildew. Zesz. Probl. Postęp. Nauk Rol., 598, 63–74. https://doi.org/10.22630/ZPPNR.2019.598.17 DOI: https://doi.org/10.22630/ZPPNR.2019.598.17
  35. Wojtania, A., Pluta, S., Seliga, L. (2019). Ocena zdolności regeneracyjnych klonów hodowlanych borówki wysokiej (Vaccinium corymbosum L.) w warunkach in vitro. Biul. Inst. Hod. Aklim. Rośl., 285, 183–184.
  36. Wojtania, A. (ed.) (2020). System kontroli jakości roślin truskawki, maliny, jagody kamczackiej i czosnku rozmnażanych metoda in vitro. Instytut Ogrodnictwa, Skierniewice, p. 41.
  37. Wojtania, A., Matysiak, B. (2018). In vitro propagation of Rosa ‘Konstancin’ (R. rugosa × R. beggeriana), a plant with high nutritional and pro-health value. Folia Hortic., 30(2), 259–267. https://doi.org/10.2478/fhort-2018-0022 DOI: https://doi.org/10.2478/fhort-2018-0022
  38. Yang, F., Tang, C., Antonietti, M. (2021). Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev., 50, 6221–6239. https://doi.org/10.1039/D0CS01363C DOI: https://doi.org/10.1039/D0CS01363C
  39. Yu, G.Y., Sinclair, J.B., Hartman, G.L., Bertagnolli, B.L. (2002). Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem., 34(7), 955–963. https://doi.org/10.1016/S0038-0717(02)00027-5 DOI: https://doi.org/10.1016/S0038-0717(02)00027-5
  40. https://www2.dijon.inrae.fr/mychintec/Mycocalc-prg/download.html [date of access: 15.11.2022].

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.