Abstract
The use of cover crops is aimed at sustaining soil health and productivity in the context of agricultural intensification and accompanying soil degradation. While cover crops have been extensively studied in field production systems, limited research has been conducted concerning their application in high-tunnel vegetable production. This study aimed to assess the effects of turnip (Brassica napus subsp. napobrassica (L.) Jafri) and swede Brassica rapa subsp. Rapifera Metzg) cover crops (CCs) on soil physicochemical and biological properties in an organic high tunnel system in southern Poland in 2017–2019. The planting sequence was as follows: winter cover crops/pumpkin/romaine lettuce/broad bean/chilli pepper. Soil analyses included measurements of bulk density, water capacity, soil aggregation, soil organic carbon (SOC), available soil nutrients, as well as microbial abundance and diversity. Rape crops produced a higher aboveground dry biomass (4.11 t ha−1) than swede (2.85 t ha−1), and the N content in their biomass was 101 kg N ha−1 and 75 kg N ha−1, respectively. The results presented that CC residue significantly contributed to soil organic carbon stock, retention of plant-available nitrogen, and improvement of soil physical properties, especially wet aggregate stability. Soils with the highest SOC concentrations were associated with the highest bacterial and fungal abundance. The most significant number of mesophilic bacteria was detected in the soil where turnip was grown as a cover crop (7.6 × 107 cfu g−1 DM soil). Moreover, a higher abundance of the tested nitrogen cycle bacteria was found in the soils after CC cultivation compared to the control soils, particularly bacteria reducing NH4 +-N and NO₃⁻-N. These findings highlight the importance of cover crop management practices in high tunnels, as they influence the composition of the total bacterial community and the abundance of N-cycling microbial guilds.
References
- Adetunjia, A.T., Ncubeb, B., Mulidzic, R., Lewu, F.B. (2020). Management impact and benefit of cover crops on soil quality. A review. Soil Tillage Res., 204, 104717. https://doi.org/10.1016/j.still.2020.104717
DOI: https://doi.org/10.1016/j.still.2020.104717
- Austin, E.E., Wickings, K., McDaniel, M.D., Robertson, F., Grandy, S. (2017). Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. Bioenergy, 9, 1252–1263. https://doi.org/10.1111/gcbb.12428
DOI: https://doi.org/10.1111/gcbb.12428
- Barker, A.V., Pilbeam, D.J. (2017). Handbook of plant nutrition. 2nd ed. CRP Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/b18458
DOI: https://doi.org/10.1201/b18458
- Berg, B. (2014). Decomposition patterns for foliar litter. A theory for influencing factors. Soil Biol. Biochem., 78, 222–232. https://doi.org/10.1016/j.soilbio.2014.08.005
DOI: https://doi.org/10.1016/j.soilbio.2014.08.005
- Blanco-Canqui, H., Ruis, S.J. (2020). Cover crop impacts on soil physical properties: a review. Soil Sci. Soc. Am., 84, 1527–1576. https://doi.org/10.1002/saj2.20129
DOI: https://doi.org/10.1002/saj2.20129
- Brennan, E.B., Acosta-Martinez, V. (2017). Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol. Biochem., 109, 188–204. https://doi.org/10.1016/j.soilbio.2017.01.014
DOI: https://doi.org/10.1016/j.soilbio.2017.01.014
- Cherr, C.M., Scholberg, J.M.S., McSorley, R. (2006). Green manure approaches to crop production: a synthesis. Agron. J., 98, 302–319. https://doi.org/10.2134/agronj2005.0035
DOI: https://doi.org/10.2134/agronj2005.0035
- Dean, J.E., Weil, R.R. (2009). Brassica cover crops for nitrogen retention in the mid-Atlantic Coastal plain. J. Environ. Qual., 38, 520–528. https:// doi.org/10.2134/jeq2008.0066
DOI: https://doi.org/10.2134/jeq2008.0066
- Dinesh, R., Suryanarayana, M.A., Ghoshal, C.S., Sheeja, TE., Shiva, K.N. (2006). Long-term effects of leguminous cover crops on biochemical and biological properties in the organic and mineral layers of soils of a coconut plantation. Eur. J. Soil Biol., 42, 147–157. https:// doi.org/10.1016/j.ejsobi.2005.12.004
DOI: https://doi.org/10.1016/j.ejsobi.2005.12.004
- Domagała-Świątkiewicz, I., Siwek, P., Bucki, P. (2019). Effect of hairy vetch (Vicia villosa L.) and vetch-rye (Secale sereale L.) cover crop and plastic mulching on high tunnel vegetable production under organic management. Biol. Agric. Hortic., 35(4), 248–262. https://doi.org/10.1080/01448765.2019.1625074
DOI: https://doi.org/10.1080/01448765.2019.1625074
- Domagała-Świątkiewicz, I., Siwek, P. (2022). Effect of field pea (Pisum sativum subsp. arvense) and pea-oat (Avena sativa) biculture cover crops on high-tunnel vegetable production under organic management. Org. Agr., 2(3), 1–16. https://doi.org/10.1007/s13165-021-00383-x
DOI: https://doi.org/10.1007/s13165-021-00383-x
- Elbanna, K., El-Shahawy, R.M., Atalla, K.M. (2012). A new simple method for the enumeration of nitrifying bacteria in different environments. Plant Soil Environ., 58, 49–53. https:// doi.org/10.17221/412/2011-PSE
DOI: https://doi.org/10.17221/412/2011-PSE
- Farooq, M.S., Wang, X., Uzair, M., Fatima, H., Fiaz, S., Maqbool, Z., Rehman, O.U.,Yousuf, M., Khan, M.R. (2022). Recent trends in nitrogen cycle and eco-efficient nitrogen management strategies in aerobic rice system. Front Plant Sci., 13. https://doi.org/10.3389/fpls.2022.960641
DOI: https://doi.org/10.3389/fpls.2022.960641
- Franche, C., Lindstrom, K., Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil., 321, 35–59. https://doi.org/10.1007/s11104-008-9833-8
DOI: https://doi.org/10.1007/s11104-008-9833-8
- Geisseler, D., Horwath, W.R., Joergensen, R.G., Ludwig, B. (2010). Pathways of nitrogen utilization by soil microorganisms – a review. Soil Biol. Biochem., 42, 2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021
DOI: https://doi.org/10.1016/j.soilbio.2010.08.021
- Gieske, M.F., Ackroyd, V.J., Baas, D.G., Mutch, D.R., Wyse, D.L., Durgan, B.R. (2016). Brassica cover crop effects on nitrogen availability and oat and corn yield. Agron. J., 108, 151–161. https://doi.org/10.2134/agronj2015.0119
DOI: https://doi.org/10.2134/agronj2015.0119
- Grzyb, A., Wolna-Maruwka, A., Niewiadomska, A. (2021). The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy 11, 1415. http://doi.org/10.3390/AGRONOMY11071415
DOI: https://doi.org/10.3390/agronomy11071415
- Han, S., Luo, X., Hao, X., Ouyang, Y., Zeng, L., Wang, L., Wen, S., Wang, B, Van Nostrand, J.D., Chen, W., Zhou, J., Huang, Q. (2021). Microscale heterogeneity of the soil nitrogen cycling microbial functional structure and potential metabolism. Environ. Microbiol., 23(2), 1199–1209. https://doi.org/10.1111/1462-2920.15348
DOI: https://doi.org/10.1111/1462-2920.15348
- Haramoto, E.R., Gallandt, E.R. (2004). Brassica cover cropping for weed management: a review. Renew. Agric. Food Syst., 19(4), 187–198. http://doi.org/10.1079/RAFS200490
DOI: https://doi.org/10.1079/RAFS200490
- Haruna, S.I., Anderson, S.H., Udawatta, R.P., Gantzer, C.J., Phillips, N.C., Cui, S., Gao, Y. (2020). Improving soil physical properties through the use of cover crops: a review. Agrosyst. Geosci. Environ., 1, 20105. https://doi.org/10.1002/agg2.20105
DOI: https://doi.org/10.1002/agg2.20105
- Hayatsu, M., Tago, K., Saito, M. (2008). Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr., 54, 33–45. https://doi.org/10.1111/j.1747-0765.2007.00195.x
DOI: https://doi.org/10.1111/j.1747-0765.2007.00195.x
- Jiang, S., Jardinaud, M.F., Gao, J., Pecrix, Y., Wen, J., Mysore, K., Xu, P., Sanchez-Canizares, C., Ruan, Y., Li, Q., Zhu, M., Li, F., Wang, E., Poole, PS., Gamas, P., Murray, JD. (2021). NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 374(6567), 625–628. https://doi.org/10.1126/science.abg5945
DOI: https://doi.org/10.1126/science.abg5945
- Kallenbach, C.M., Frey, S.D., Grandy, A.S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun., 7, 13630. https://doi.org/10.1126/science.abg594510.1038/ncomms13630
DOI: https://doi.org/10.1038/ncomms13630
- Koudahe, K., Allen, S.C., Djaman, K. (2022). Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res., 10, 343–354. https://doi.org/10.1016/j.iswcr.2022.03.003
DOI: https://doi.org/10.1016/j.iswcr.2022.03.003
- Larkin, R.P. (2020). Effects of cover crops, rotation, and biological control products on soil properties and productivity in organic vegetable production in the Northeastern US. Org. Agri., 10, 171–186. https://doi.org/10.1007/s13165-019-00257-3
DOI: https://doi.org/10.1007/s13165-019-00257-3
- Lee, J., Kim, H.S., Jo, H.Y., Kwon, M.J. (2021). Revisiting soil bacterial counting methods: optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods. PLoS ONE, 16(2), e0246142. https://doi.org/10.1371/journal.pone.0246142
DOI: https://doi.org/10.1371/journal.pone.0246142
- Magdoff, F., van Es, H. (2021). Building soils for better crops. 4rd ed. Sustainable Agriculture Research and Education, Waldorf.
- Mooshammer, M., Wanek, W., Hammerle, L., Fuchslueger, L., Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger, K.M., Zechmeister-Boltenstern, S., Richter, A. (2014). Adjustment of microbial nitrogen use efficiency to carbon : nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun., 5, 3694. https://doi.org/10.1038/ncomms4694
DOI: https://doi.org/10.1038/ncomms4694
- Ostrowska, A., Gawliński, S., Szczubiałka, Z. (eds.). (1991). Soil and plant analysis procedures. Institute Environment Protection, Warszawa. [In Polish]
- Patkowska, E., Błażewicz-Woźniak, M., Konopiński, M., Wach, D. (2016). The effect of cover crops on the fungal and bacterial communities in the soil under carrot cultivation. Plant Soil Environ., 62, 237–242. https://doi.org/10.17221/117/2016-PSE
DOI: https://doi.org/10.17221/117/2016-PSE
- Peel, M.C., Finlayson, B.L., McMahon, T.A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
DOI: https://doi.org/10.5194/hess-11-1633-2007
- Perkus, E.A., Grossman, J.M., Pfeiffer, A., Rogers, M.A., Rosen, C.J. (2022). Exploring overwintered cover crops as a soil management tool in upper-midwest high tunnels. HortScience, 57(2), 171–180. https://doi.org/10.21273/HORTSCI15987-21
DOI: https://doi.org/10.21273/HORTSCI15987-21
- PN-A-75101-03:1990. Fruit and vegetables. Sample preparation and methods of physicochemical tests – Determination of dry matter content by gravimetric method. Polish Committee for Standardization. [In Polish]
- PN-R-04032:1998. Soil and mineral materials. Sampling and determination of particle size distribution. Polish Committee for Standardization. [In Polish]
- Poeplau, C., Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ., 200, 33–41. https://doi.org/10.1016/j.agee.2014.10.024
DOI: https://doi.org/10.1016/j.agee.2014.10.024
- Rajta, A., Bhatia, R., Setia, H., Pathania, P. (2020). Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J. Appl. Microbiol., 128, 1261–1278. http://doi.org/10.1111/JAM.14476
DOI: https://doi.org/10.1111/jam.14476
- Robacer, M., Canali, S., Kristenses, H.K., Bavec, F., Mlakar, S.G., Jakop, M., Bavec, M. (2016). Cover crops in organic field vegetable production. Sci. Hortic., 208, 104–110. https://doi.org/10.1016/j.scientia.2015.12.029
DOI: https://doi.org/10.1016/j.scienta.2015.12.029
- Robertson, G., Vitousek, P. (2009). Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour., 34, 97–125. https://doi.org/10.1146/annurev.environ.032108.105046
DOI: https://doi.org/10.1146/annurev.environ.032108.105046
- Romdhane, S., Spor, A., Busset, H., Falchetto, L., Martin, J., Bizouard, F., Bru, D., Breuil, M.C., Philippot, L., Cordeau, S. (2019). Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front Microbiol., 10, 1618. https://doi.org/10.3389/fmicb.2019.01618
DOI: https://doi.org/10.3389/fmicb.2019.01618
- Saleem, M., Pervaiz, Z.H., Contreras, J., Lindenberger, J.H., Hupp, B.M., Chen, D., Zhang, Q., Wang, C., Iqbal, J., Twigg, P. (2020). Cover crop diversity improves multiple soil properties via altering root architectural traits. Rhizosphere, 16, 100248. https://doi.org/10.1016/j.rhisph.2020.100248
DOI: https://doi.org/10.1016/j.rhisph.2020.100248
- Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S. (2020). Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 12, 9808. https://doi.org/10.3390/SU12239808
DOI: https://doi.org/10.3390/su12239808
- Scavo, A., Restuccia, A., Abbate, C., Lombaedo S., Fontanazza, S., Pandino, G., Anastasi, U., Mauromicale, G. (2021). Trifolium subterraneum cover cropping enhances soil fertility and weed seedbank dynamics in a Mediterranean apricot orchard. Agron. Sustain. Dev., 41, 70. https://doi.org/10.1007/s13593-021-00721-z
DOI: https://doi.org/10.1007/s13593-021-00721-z
- Scavo, A., Fontanazza, S., Restuccia, A., Pesce, G.R., Abbate, C., Mauromicale, G. (2022).
- The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev., 42, 93. https://doi.org/10.1007/s13593-022-00825-0
DOI: https://doi.org/10.1007/s13593-022-00825-0
- Schloter, M., Nannipieri, P., Sørensen, S.J., van Elsas, J.D. (2018). Microbial indicators for soil quality. Biol. Fertil. Soils, 54, 1–10. https://doi.org/10.1007/s00374-017-1248-3
DOI: https://doi.org/10.1007/s00374-017-1248-3
- Schlüter, S., Weller, U., Vogel, H.J. (2011). Soil-structure development including seasonal dynamics in a long-term fertilization experiment. J. Plant Nutr. Soil Sci., 174(3), 395–403. https://doi.org/10.1002/jpln.201000103
DOI: https://doi.org/10.1002/jpln.201000103
- Siwek, P., Domagała-Świątkiewicz, I., Kalisz, A., Bucki, P. (2020). Microclimatic conditions and physico-chemical properties of soil in intensive ecological vegetable crop rotation in high tunnel. Acta. Sci. Pol. Hortorum Cultus, 19(3), 73–87. https://doi.org/10.24326/asphc.2020.3.7
DOI: https://doi.org/10.24326/asphc.2020.3.7
- Taylor, A.E., Bottomley, P.J. (2006). Nitrite production by Nitrosomonas europaea and Nitrosospira sp. AV in soils at different solution concentrations of ammonium. Soil Biol. Biochem., 38, 828–836. https:// doi.org/10.1016/j.soilbio.2005.08.001
DOI: https://doi.org/10.1016/j.soilbio.2005.08.001
- Thorup-Kristensen, K., Magid, J., Jensen, L.S. (2003). Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron., 79, 227–302. https:// doi.org/10.1016/S0065-2113(02)79005-6
DOI: https://doi.org/10.1016/S0065-2113(02)79005-6
- Thorup-Kristensen, K., Bodin Dresboll, D., Kristensen, L.H. (2012). Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. Eur. J. Agron., 37, 66–82. https:// doi.org/10.1016/j.eja.2011.11.004
DOI: https://doi.org/10.1016/j.eja.2011.11.004
- Wang, M., Pendall, E., Fang, C., Li, B., Nie, M. (2018). A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agric. Ecosyst. Environ., 266, 49–54. https:// doi.org/10.1016/j.agee.2018.07.019
DOI: https://doi.org/10.1016/j.agee.2018.07.019
- Wistreich, G.A., Lechtman, M.D. (1988). Laboratory exercises in microbiology. 6th ed. Macmillan Pub., New York.
- Xiang, X., Liu, J., Zhang, J., Li, D., Xu, C., Kuzyakov, Y. (2020). Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil Till. Res., 196, 104491. https://doi.org/10.1016/j.still.2019.104491
DOI: https://doi.org/10.1016/j.still.2019.104491
Downloads
Download data is not yet available.
-
Naushad Ali,
Sardar Ali,
Naqib Ullah Khan,
Sohail Ahmad Jan,
Malik Ashiq Rabbani,
Ijaz Hussain,
GENETIC DIVERSITY OF Brassica rapa GERMPLASM OF KHYBER PAKHTUNKHWA PAKISTAN REVEALED BY MOLECULAR MARKERS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 6 (2019)
-
Nurdilek Gulmezoglu,
Cigdem Yücel,
Sibel Yigiter-Saricam,
Mutual effects of humic acid content and nitrogen sources for vegetative development and flowering of snapdragon (Antirrhinum majus L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 1 (2024)
-
Barbara Skwaryło-Bednarz ,
Agnieszka Jamiołkowska,
Marek Kopacki,
Barbara Marcinek,
Mariusz Szmagara,
Izabela Kot,
Impact of N fertilization and cultivar on amaranth nutrients and soil health
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Weronika Kursa,
Agmieszka Jamiołkowska,
Barbara Skwaryło-Bednarz,
Radosław Kowalski,
Jakub Wyrostek,
Elżbieta Patkowska,
Marek Kopacki,
In vitro efficacy of herbal plant extracts on some phytopathogenic fungi
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 6 (2022)
-
Halina Buczkowska,
Renata Nurzyńska-Wierdak,
FRUITING OF MELON (Cucumis melo L.) GROWN ORGANICALLY ON MULCHED SOIL
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 4 (2020)
-
Natalia Skubij,
Katarzyna Dzida,
INFLUENCE OF NITROGEN DOSE AND HARVESTING DATE ON THE YIELD AND BIOLOGICAL VALUE OF RAW GARDEN SAVORY (Satureja hortensis L.) OF SATURN CV.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
-
Ewa Dorota Zalewska,
Grażyna Zawiślak,
Rafał Papliński,
Magdalena Walasek-Janusz,
Robert Gruszecki,
Antifungal effects of some essential oils on selected allergenic fungi in vitro
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 6 (2022)
-
Hanna Olszak-Przybyś,
Grażyna Korbecka-Glinka,
Anna Czubacka,
Elżbieta Patkowska,
Identification of fungi inhabiting underground plant parts of soybean [Glycine max (L.) Merrill] in two developmental stages
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 5 (2021)
-
Krzysztof Rutkowski,
Effect of orchard site and climatic conditions on plant nematode density levels
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 6 (2022)
-
Sylwester Smoleń,
Włodzimierz Sady,
INFLUENCE OF SOIL APPLICATION OF IODINE AND SUCROSE ON MINERAL COMPOSITION OF SPINACH PLANTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 10 No. 3 (2011)
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.