Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 2 (2024)

Articles

Comparison of the efficiency of synthetic auxins and biostimulants and two types of substrate in rooting of shoot cuttings in ‘Pi-ku 1’ rootstock

DOI: https://doi.org/10.24326/asphc.2024.5308
Submitted: December 1, 2023
Published: 2024-04-30

Abstract

The low-cost propagation of semi-dwarf cherry rootstock is an essential issue in the production of maiden trees of this species. Among the promising rootstocks is ‘Pi-ku 1’, obtained in Germany. However, the possibility of its propagation using shoot cuttings has not been investigated. It was the purpose of this study. Two ways of cuttings treatment before placing them in the substrate were assessed. One used two preparations in powder (Rhizopon AA and Ukorzeniacz AB), and the second used two alcoholic auxin solutions (IAA and IBA). Instead of synthetic auxins, foliar spraying with two biostimulants was performed (Goteo and Bispeed). All the applied treatments increased the rooting percentage of ‘Pi-ku 1’ rootstock cuttings compared to the control from 5% for Rhizopon AA to 18.2% for auxin IBA. The exception was the lack of a positive effect of the Bispeed biostimulant (less than 5.2%). The use of synthetic auxins increased the number of  utting roots more than three times (IBA) or almost twice (Ukorzeniacz AB) and their length more than twofold (IAA, Rhizopon AA) in proportion to the control. The effect of synthetic auxin treatments on the remaining growth parameters under study was also positive. Foliar treatment of cuttings with biostimulants did not change their growth. Only in one of the two years of the study did the fresh mass of cuttings improve after using Goteo biostimulant (7.5%). As part of the experiment, the effect of two substrate types – peat mixed with perlite and peat with sand – was also tested. During the two years of research, the cuttings were rooted several percent better in peat and sand (2.7% – 2018 and 4.4% – 2019). Using peat with sand as a rooting substrate significantly improved the number and length of roots (11.90 and 125.10) of Pi-ku 1 rootstock cuttings compared to the second one (9.23 and 109.08, respectively). All treatments applied to cuttings, except two biostimulants, increased the amount of chlorophyll in the leaves.

References

  1. Aysanov, T.S., Romanenko, E.S., Selivanova, M.V., Esaulko, N.A., Mironova, E.A., German, M.S. (2019). Improving the technology of obtaining clonal root stocks of stone fruit crops. Earth Environ. Sci. 315(2), 022017. https://doi.org/10.1088/1755-1315/315/2/022017 DOI: https://doi.org/10.1088/1755-1315/315/2/022017
  2. Bassi, G., Fajt, N., Biško, A., Donik Purgaj, B., Draicchio, P., Folini, L., Gusmeroli, F., Steinbauer, L. (2016). Vegetative and productive performances of ‘Kordia’ and ‘Regina’ sweet cherry cultivars grafted on four clonal rootstocks in the Alpe Adria region. Acta Hortic. 1139, 159–166. https://doi.org/10.17660/ActaHortic.2016.1139.28 DOI: https://doi.org/10.17660/ActaHortic.2016.1139.28
  3. Bondarenko, P. (2019). Physiological basics of sweet cherry productivity depending on rootstocks, interstems and plant density. Open Agric. 4(1), 267–274. https://doi.org/10.1515/opag-2019-0025 DOI: https://doi.org/10.1515/opag-2019-0025
  4. Borowiak, K., Korszun, S. (2012). Investigations of photosynthetic activity parameters in relation to berries yield of selected grapevine cultivars. Nauka Przyr. Technol. 6(1), 8.
  5. Bourrain, L., Charlot, G.I. (2014). In vitro micrografting of cherry (Prunus avium L. ‘Regina’) onto ‘Piku® 1’ rootstock [P. avium × (P. canescens × P. tomentosa)]. J. Hort. Sci. Biotech. 89(1), 47–52. https://doi.org/10.1080/14620316.2014.11513047 DOI: https://doi.org/10.1080/14620316.2014.11513047
  6. Calvo, P., Nelson, L., Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8 DOI: https://doi.org/10.1007/s11104-014-2131-8
  7. Cmelik, Z., Druzic, J., Duralija, B., Bencic, D. (2004). Influence of clonal rootstocks on growth and cropping of ‘Lapins’ sweet cherry. Acta Hortic. 658, 125–128. https://doi.org/10.17660/ActaHortic.2004.658.16 DOI: https://doi.org/10.17660/ActaHortic.2004.658.16
  8. Dessy, S., Radice, S., Andorno, A., Ontivero, M. (2004). Ferdor-Julior, Myriam-Yumir and Julien GF 655-2 rootstocks: Propagation by cuttings with growth regulators and bottom heat. Acta Hortic. 658, 629–635. https://doi.org/10.17660/ActaHortic.2004.658.95 DOI: https://doi.org/10.17660/ActaHortic.2004.658.95
  9. Dinkova, H., Stoyanova, T., Dragoyski, K., Minkov, P., Bozhanska, T., Kutinkova, H. (2006). Possibilities of improving methods of vegetative propagation for currants. Latv. J. Agron. 9, 16–19.
  10. Drabudko, N.N., Samus, V.A., Leles, S.V. (2016). [Propagation of cherry clonal rootstocks by green cuttings]. Plodovodstvo 28, 131–137. In Russian.
  11. Drobek, M., Frąc, M., Cybulska, J. (2019). Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – a review. Agronomy 9(6), 335. https://doi.org/10.3390/agronomy9060335 DOI: https://doi.org/10.3390/agronomy9060335
  12. Eremin, G.V., Podorozhniy, V.N., Eremina, O.V. (2017). Use of genetic diversity of the genus Prunus L. in selection of clonal rootstocks for stone fruit crops and features of their reproduction. Proc. Latvian Acad. Sci. 71(3), 173–177. https://doi.org/10.1515/prolas-2017-0029 DOI: https://doi.org/10.1515/prolas-2017-0029
  13. Exadaktylou, E., Thomidis, T., Grout, B., Zakynthinos, G., Tsipouridis, C. (2009). Methods to improve the rooting of hardwood cuttings of the ‘Gisela 5’ cherry rootstock. HortSci. 19(2), 254–259. https://doi.org/10.21273/HORTSCI.19.2.254 DOI: https://doi.org/10.21273/HORTTECH.19.2.254
  14. Franken-Bembenek, S. (2010). [GiSelAs, PIKUs and new Giessen Clone: Results from European and North American cherry rootstock trials]. Erwerbs-Obstbau, 52, 17–25. In. German. https://doi.org/10.1007/s10341-010-0100-9 DOI: https://doi.org/10.1007/s10341-010-0100-9
  15. Gergoff Grozeff, G.E., Romero, Á.M. De Los, Aubone Videla, M. (2018). Nitric oxide in combination with indole-3-butyric acid im-proves root growth in ‘Ferdor Julior’ hardwood cuttings (Prunus insistitia (L.) × Prunus domestica (L.)). J. Hortic. Sci. Biotech. 93(2), 175–184. https://doi.org/10.1080/14620316.2017.1358592 DOI: https://doi.org/10.1080/14620316.2017.1358592
  16. Gyeviki, M., Bujdosó, G., Hrotko, K. (2008). Results of cherry rootstock evaluations in Hungary. Inter. J. Hortic. Sci. 14(4), 11–14. http://dx.doi.org/10.31421/IJHS/14/4/1522 DOI: https://doi.org/10.31421/IJHS/14/4/1522
  17. Hiscox, J.D., Israelstam, G.F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57(12), 1332–1334. https://doi.org/10.1139/b79-163 DOI: https://doi.org/10.1139/b79-163
  18. Hrotkó, K., Magyar, L. Gyeviki, M. (2009a). Effect of rootstocks on vigor and productivity in high density cherry orchards. Acta Hortic. 825, 245–250, https://doi.org/10.17660/ActaHortic.2009.825.38 DOI: https://doi.org/10.17660/ActaHortic.2009.825.38
  19. Hrotkó, K., Magyar, L., Hoffmann, S., Gyeviki, M. (2009b). Rootstock evaluation in intensive sweet cherry (Prunus avium L.) orchard. Inter. J. Hortic. Science. 15(3), 7–12. DOI: https://doi.org/10.31421/IJHS/15/3/825
  20. Kapczyńska, A., Kowalska, I., Prokopiuk, B., Pawłowska, B. (2020). Rooting media and biostimulator goteo treatment effect the adventitious root formation of pennisetum ‘Vertigo’ cuttings and the quality of the final product. Agriculture 10(11), 570. https://doi.org/10.3390/agriculture10110570 DOI: https://doi.org/10.3390/agriculture10110570
  21. Kaviani, B., Negahdar, N., Hashemabadi, D. (2016). Improvement of micropropagation and proliferation of Robinia pseudoacasia L. using plant growth regulators and extracts of brown seaweed Ascophyllum nodosum. J. Crop Prod. 6(21), 61–79. https://doi.org/10.18869/acadpub.jcpp.6.21.61 DOI: https://doi.org/10.18869/acadpub.jcpp.6.21.61
  22. Kumar, A., Sharma, R., Thakur, M. (2020). In vitro rooting and hardening of clonal cherry rootstock Gisela 5 (Prunus cerasus × Prunus canescens). Indian J. Agric. Sci. 90(5), 1032–1035. https://doi.org/10.56093/ijas.v90i5.104389 DOI: https://doi.org/10.56093/ijas.v90i5.104389
  23. Loconsole, D., Cristiano, G., De Lucia, B. (2022). Improving aerial and root quality traits of two landscaping shrubs stem cuttings by applying a commercial brown seaweed extract. Horticulturae 8(9), 806. https://doi.org/10.3390/horticulturae8090806 DOI: https://doi.org/10.3390/horticulturae8090806
  24. Malinowska, A., Urbaniak, M., Świerczyński, S. (2018). [Foliar treatment with selected preparations and their effect on the rooting of stem cuttings of two varieties of gymnosperm species]. Nauka Przyr. Technol. 12(3), 261–272. In Polish. http://dx.doi.org/10.17306/J.NPT.00242
  25. Markovski, A., Popovska, M., Gjamovski, V. (2015). Investigation of the possibility for production of some stone fruit rootstocks by rooting cuttings. Acta Agric. Serb. 20(39), 75–83. https://doi.org/10.5937/AASer1539075M DOI: https://doi.org/10.5937/AASer1539075M
  26. Mezey, J., Leško, I. (2014). Callus and root-system formation in cherry rootstock GiSelA 5. Acta Hortic. Regiot. 17(1), 5–7. https://doi.org/10.2478/ahr-2014-0002 DOI: https://doi.org/10.2478/ahr-2014-0002
  27. Monder, M.J. (2019). Rooting and growth of root cuttings of two old rose cultivars ‘Harison’s Yellow’ and ‘Poppius’ treated with IBA and biostimulants. Acta Agrobot. 72(2), 1774. https://doi.org/10.5586/aa.1774 DOI: https://doi.org/10.5586/aa.1774
  28. Murawska, B., Gabrowska, M., Spychaj-Fabisiak, E., Wszelaczyńska, E., Chmielewski, J. (2017). Production and environmental aspects of the application of biostimulators Asahi SL, Kelpak SL and stimulator Tytanit with limited doses of nitrogen. Envir. Protec. Natural Res. 28(4), 10–15. https://doi.org/10.1515/oszn-2017-0024 DOI: https://doi.org/10.1515/oszn-2017-0024
  29. Myndra, V., Chernets, A., Kozhoharenko, V., Kuku, G., Kalashian, Yu. (2010). [Improvement of rootstocks of cherry trees – a way of intensification of culture]. Conference “Horticulture, Viticultura şi vinificaţie, Silviculturăşi gardin publice, Protecţia plantelor”, 24(1), 31–34. In Belarusian.
  30. Nasri, F., Fadakar, A., Saba, M.K., Yousefi, B. (2015). Study of indole butyric acid (IBA) effects on cutting rooting improving some of wild genotypes of damask roses (Rosa damascena Mill.). J. Agric. Sci. 60(3), 263–275. https://doi.org/10.2298/JAS1503263N DOI: https://doi.org/10.2298/JAS1503263N
  31. Nečas, T., Krška, B. (2013). Propagation of different stone fruit rootstocks using softwood and hardwood cuttings. Acta Hort. 985, 127–138. https://doi.org/10.17660/ActaHortic.2013.985.16 DOI: https://doi.org/10.17660/ActaHortic.2013.985.16
  32. Otiende, M.A., Nyabundi, J.O., Ngamau, K., Opala, P. (2017). Effects of cutting position of rose rootstock cultivars on rooting and its relationship with mineral nutrient content and endogenous carbohydrates. Sci. Hortic. 225, 204–212. https://doi.org/10.1016/j.scienta.2017.07.009 DOI: https://doi.org/10.1016/j.scienta.2017.07.009
  33. Owen J.S., Maynard, B.K. (2007). Environmental effects on stem-cutting propagation: a brief review. Com. Proc. Inter. Plant Propag. Soc. 57, 558–565.
  34. Pacholczak, A., Nowakowska, K. (2017). Effect of the biopreparation Goteo on rooting of hydrangea stem cuttings (Hydrangea paniculata Siebold ‘L imelight’ and Vanille freise® ‘Renhy’). Propag. Ornam. Plants 17(4), 126–133.
  35. Pacholczak, A., Nowakowska, K. (2020). The effect of biostimulators and indole-3-butyric acid on rooting of stem cuttings of two ground cover roses. Acta Agrobot. 73(1), 7314. https://doi.org/10.5586/aa.7314 DOI: https://doi.org/10.5586/aa.7314
  36. Pacholczak, A., Nowakowska, K., Mika, N., Borkowska, M. (2016). The effect of the biostymulator Goteo on the rooting of ninebark stem cuttings. Folia Hort. 28(2), 109–116. https://doi.org/10.1515/fhort-2016-0013 DOI: https://doi.org/10.1515/fhort-2016-0013
  37. Pacholczak, A., Szydło, W., Jacygrad, E., Federowicz, M. (2012). Effect of auxins and the biostimulator Algaminoplant on rhizogene-sis in stem cuttings of two dogwood cultivars (Cornus alba ‘Aurea’ and ‘Elegantissima’). Acta Sci. Pol. Hortorum Cultus 11(2), 93–103.
  38. Pacholczak, A., Szydło, W., Petelewicz, P., Szulczyk, K. (2013). The effect of Algaminoplant on rhizogenesis in stem cuttings of Physocarpus opulifolius ‘Dart’s Gold’ and ‘Red Baron’. Acta Sci. Pol. Hortorum Cultus. 12(3), 105–116.
  39. Rajkumar, Gora, J.S., Kumar, R., Singh, A., Kumar, A., Gajender (2017). Effect of different growing media on the rooting of pomegranate (Punica granatum L.) cv. ‘Phule arakta’ cuttings. J. Appl. Nat. Sci. 9(2), 715–719. https://doi.org/10.31018/jans.v9i2.1263 DOI: https://doi.org/10.31018/jans.v9i2.1263
  40. Raju, N.L., Prasad, M.N.V. (2010). Influence of growth hormones on adventitious root formation in semi-hardwood cuttings of Celasturs paniculatus Willd. a contribution for rapid multiplication and conservation management. Agrof. Syst. 79, 249–252. https://doi.org/10.1007/s10457-009-9251-9 DOI: https://doi.org/10.1007/s10457-009-9251-9
  41. Rouphael, Y., Spichal, L., Panzarova, K., Casa, R., Colla, G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 9, 1197. https://doi.org/10.3389/fpls.2018.01197 DOI: https://doi.org/10.3389/fpls.2018.01197
  42. Sansavini, S., Lugli, S. (2009). New rootstocks for intensive sweet cherry plantations. Acta Hortic 1020, 411–434. DOI: https://doi.org/10.17660/ActaHortic.2014.1020.59
  43. Sardoei, A.S. (2016). Effect of different media of cuttings on rooting of guava (Psidium guajava L.). Euro. J. Exp. Bio. 4(2), 88–92.
  44. Sarropoulou, V., Dimassi-Theriou, K., Therios, I. (2015). Effects of exogenous indole-3-butyric acid and myo-inositol on in vitro root-ing, vegetative growth and biochemical changes in leaves and roots in the sweet cherry rootstock M×M 14 using shoot tip ex-plants. Theor. Exp. Plant Physiol. 27, 191–201. https://doi.org/10.1007/s40626-015-0044-4 DOI: https://doi.org/10.1007/s40626-015-0044-4
  45. Sedlak, J., Paprstein, F., Erbenova, M. (2008). In vitro propagation of PHL dwarfing sweet cherry rootstocks. Acta Hortic. 795, 395–400. https://doi.org/10.17660/ActaHortic.2008.795.59 DOI: https://doi.org/10.17660/ActaHortic.2008.795.59
  46. Sharma, R., Kumar, A. (2019). Influence of indole butyric acid on propagability of clonal rootstock of Prunus species through cuttings and stooling. J. Pharmac. Phytochem. 8(6), 2483–2487.
  47. Sims, D.A., Gamon, J.A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81(2–3), 337–354. https://doi.org/10.1016/S0034-4257(02)00010-X DOI: https://doi.org/10.1016/S0034-4257(02)00010-X
  48. Skůpa, P., Opatrný, Z., Petrášek, J. (2014). Auxin biology: Applications and the mechanisms behind. In: Applied plant cell biology, plant cell monographs, Nick P. Opatrný Z. (eds.). Berlin, Heidelberg, Springer-Verlag, pp. 69–102. http://dx.doi.org/10.1007/978-3-642-41787-0_3 DOI: https://doi.org/10.1007/978-3-642-41787-0_3
  49. Spornberger, A., Hajagos, A., Modl, P., Vegvari, G. (2015). [Impact of rootstocks on growth, yield and fruit quality of sweet cherries (Prunus avium L.) cv. ‘Regina’ and ‘Kordia’ in a replanted cherry orchard in Eastern Austria]. Erwerbs-Obstbau 57(2), 63–69. In German. https://doi.org/10.1007/s10341-015-0232-z DOI: https://doi.org/10.1007/s10341-015-0232-z
  50. Steele, M., Gitelson, A.A., Rundquist, D. (2008). Nondestructive estimation of leaf chlorophyll content in grapes. Am. J. Enol. Vitic. 59(3), 299–305. DOI: https://doi.org/10.5344/ajev.2008.59.3.299
  51. Świerczyński, S. (2023). Assessment of the effect of treating ‘GiSelA 5’softwood cuttings with biostimulants and synthetic auxin on their root formation and some of their physiological parameters. Plants 12(3), 658. https://doi.org/10.3390/plants12030658 DOI: https://doi.org/10.3390/plants12030658
  52. Štefančič, M., Stampar, F., Osterc, G. (2005). Influence of IAA and IBA on root development and quality of Prunus ‘GiSelA 5’ leafy cuttings. Hort. Sci. 40(7), 2052–2055. https://doi.org/10.21273/HORTSCI.40.7.2052 DOI: https://doi.org/10.21273/HORTSCI.40.7.2052
  53. Štefančič, M., Stampar, F., Osterc, G. (2006). Influence of endogenous IAA levels and exogenous IBA on rooting and quality of leafy cuttings of Prunus ‘GiSelA 5’. J. Hort. Sci. Biotech. 81(3), 508–512. https://doi.org/10.1080/14620316.2006.11512095 DOI: https://doi.org/10.1080/14620316.2006.11512095
  54. Štefančič, M., Vodnik, D., Štampar, F., Osterc, G. (2007). The effect of a fogging system on the physiological status and rooting capacity of leafy cuttings of woody species. Trees 21, 491–496. https://doi.org/10.1007/s00468-006-0121-z DOI: https://doi.org/10.1007/s00468-006-0121-z
  55. Szabó, V., Magyar, L., Hrotkó, K. (2016). Effect of leaf spray treatments on rooting and quality of Prunus mahaleb (L.) cuttings. Acta Sci. Pol. Hortorum Cultus 15(1), 77–87.
  56. Traversari, S., Cacini, S., Nesi, B. (2022). Seaweed extracts as substitutes of synthetic hormones for rooting promotion in rose cuttings. Horticulturae 8(7), 561. https://doi.org/10.3390/horticulturae8070561 DOI: https://doi.org/10.3390/horticulturae8070561
  57. Trobec, M., Stampar, F., Veberic, R., Osterc, G. (2005). Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock ‘GiSelA 5’ leafy cuttings. J. Plant Phys. 162(5), 589–597. https://doi.org/10.1016/j.jplph.2004.10.009 DOI: https://doi.org/10.1016/j.jplph.2004.10.009
  58. Usenik, V., Štampar, F., Fajt, N. (2008). Sweet cherry rootstock testing in Slovenia. Acta Hortic. 795, 273–276. https://doi.org/10.17660/ActaHortic.2008.795.37 DOI: https://doi.org/10.17660/ActaHortic.2008.795.37
  59. Usenik, V., Štampar, F., Šturm, K., Fajt, N. (2005). Rootstocks affect leaf mineral composition and fruit quality of ‘Lapins’ sweet cherry. Acta Hortic., 667, 247–252. https://doi.org/10.17660/ActaHortic.2005.667.36 DOI: https://doi.org/10.17660/ActaHortic.2005.667.36
  60. Wang, Y., Fu, F., Li, J., Wang, G., Wu, M., Zhan, J., Chen, X., Mao, Z. (2016). Effects of seaweed fertilizer on the growth of Malus hupehensis Rehd. Seedlings, soil enzyme activities and fungal communities under replant condition. Eur. J. Soil Biol. 75, 1–7. https://doi.org/10.1016/j.ejsobi.2016.04.003 DOI: https://doi.org/10.1016/j.ejsobi.2016.04.003

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.