Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 2 (2024)

Articles

Impact of N fertilization and cultivar on amaranth nutrients and soil health

DOI: https://doi.org/10.24326/asphc.2024.5313
Submitted: December 7, 2023
Published: 2024-04-30

Abstract

The purpose of this study was to assess the effects of nitrogen (N) fertilization and cultivar on vitamin C content, total antioxidant capacity (TAC), and catalase (CAT) activity in amaranth leaves, as well as in the rhizosphere and non-rhizosphere soil. For this purpose, a 3-year split-plot field experiment was conducted, which included the following factors: N fertilization (kg ∙ ha–1: N0 – control, N1 – 60, N2 – 90, N3 – 120, N4 – 150), amaranth cultivars (‘Rawa’ and ‘Aztek’) and developmental stages (BBCH 13, BBCH 16, BBCH 19). The factor that most significantly differentiated the vitamin C content in the leaves was the cultivar, followed by the development stage, N fertilization, and weather conditions. The cultivar ‘Aztek’, stage BBCH 13, N3 fertilization, and weather conditions during the last year of the experiment gave the best results in this regard. CAT activity in the leaves significantly depended on N fertilization and developmental stage. It increased with the higher N dose and decreased with plant development. The TAC of the leaves depended only on the developmental stage and weather conditions. The highest TAC was observed at BBCH 13 and the third year of the study. CAT in the rhizosphere significantly depended on N fertilization, cultivar, and developmental stage, while in the non-rhizosphere zone, it depended on N fertilization, developmental stage, and weather conditions. This study is an essential addition to the knowledge on the use of amaranth seed forms as a vegetable with high nutritional value and antioxidant properties, as well as the effect of this plant on soil biological properties.

References

  1. Acikgoz, F.E., Adiloglu, A., Daglioglu, F., Celikyurt, G., Karakas, O. (2014). The effect of increasing doses of nitrogen (N) application for some nutrient elements, vitamin C and protein contents of komatsuna (Brassica rapa var. perviridis) plant. Bulg. J. Agric. Sci., 20(2), 321–324. Available: https://agrojournal.org/20/02-13.pdf [date of access: 30.09.2023].
  2. Aderibigbe, O.R., Ezekiel, O.O., Owolade, S.O., Korese, J.K., Sturm, B., Hensel, O. (2020). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: a review. Crit. Rev. Food Sci. Nutr., 1–14. https://doi.org/10.1080/10408398.2020.1825323 DOI: https://doi.org/10.1080/10408398.2020.1825323
  3. Akin-Idowu, P.E., Ademoyegun, O.T., Olagunju, Y.O., Aduloju, A.O., Adebo, U.G. (2017). Phytochemical content and antioxidant activity of five grain amaranth species. Am. J. Food Sci. Technol., 5, 249–255. https://doi.org/10.12691/ajfst-5-6-5
  4. Alegbejo, J.O. (2013). Nutritional value and utilization of amaranthus (Amaranthus spp.) – A review. Bayero J. Pure Appl. Sci., 6(1), 136–143. https://doi.org/10.4314/bajopas.v6i1.27 DOI: https://doi.org/10.4314/bajopas.v6i1.27
  5. Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K., Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem., 119, 770–778. https://doi.org/10.1016/j.foodchem.2009.07.032 DOI: https://doi.org/10.1016/j.foodchem.2009.07.032
  6. Andjelković, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., Verhe, R. (2006). Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem., 98, 23–31. https://doi.org/10.1016%2Fj.foodchem.2005.05.044 DOI: https://doi.org/10.1016/j.foodchem.2005.05.044
  7. Ayodele, V.I. (2002). Influence of nitrogen fertilisation on yield of Amaranthus species. Acta Hortic., 571, 89–94. https://doi.org/10.17660/ActaHortic.2002.571.9 DOI: https://doi.org/10.17660/ActaHortic.2002.571.9
  8. Baraniak, J., Kania-Dobrowolska, M. (2022). The dual nature of amaranth – functional food and potential medicine. Foods, 11, 618. https://doi.org/10.3390/foods11040618 DOI: https://doi.org/10.3390/foods11040618
  9. Bartosz G. (2003). Druga twarz tlenu [The other face of oxygen]. Wyd. PWN, Warszawa, Poland, 30–57.
  10. Bielińska, E.J. (2007). Aktywność enzymów glebowych w ryzosferze mniszka lekarskiego jako wskaźnik stanu ekochemicznego gleb miejskich [Soil enzymes activity in the rhizosphere of the dandelion as an indicator of the ecochemical condition of urban soils]. J. Res. Appl. Agric. Eng., 52(3), 10–14.
  11. Biesiada, A., Tomczak, A. (2012). Biotic and abiotic factors affecting the content of the chosen antioxidant compounds in vegetables. Veg. Crop. Res. Bull., 76, 55–78. Available: https://intapi.sciendo.com/pdf/10.2478/v10032-012-0004-3 [date of access: 12.11.2023]. DOI: https://doi.org/10.2478/v10032-012-0004-3
  12. Bodroža Solarov, M.I., Šimurina, O.D., Kojić, J.S., Krulj, J.A., Filipović, J.S., Cvetković, B.R., Ilić N.M. (2022). Utilization of Amaranthus spp. grains in food. Food Feed Res., 49(1), 37–52. https://doi.org/10.5937/ffr49-37163 DOI: https://doi.org/10.5937/ffr49-37163
  13. Brauner, L., Bukatsch, F. (1987). Praktikum z fizjologii roślin [Practice in plant physiology]. Wyd. PWN, Warszawa, Poland.
  14. Brzezińska, M. (2001). Aktywność katalazowa gleby torfowo-murszowej irygowanej wodami ściekowymi [Catalase activity of peat-muck soil irrigated with municipal wastewater]. Acta Agrophys., 57, 5–14.
  15. Brzezińska, M. (2006). Aktywność biologiczna oraz procesy jej towarzyszące w glebach organicznych nawadnianych oczyszczonymi ściekami miejskimi [Impact of treated wastewater on biological activity and accompanying processes in organic soils]. Wyd. Instytut Agrofizyki PAN, Lublin, Poland, 12–13.
  16. Dz.U. nr 196 poz. 1425. (2007). Rozporządzenie Ministra Zdrowia z dnia 9 października 2007 r. w sprawie składu oraz oznakowania suplementów diety [Regulation of the Minister of Health of October 9, 2007 on the composition and labeling of dietary supplements.]. Available: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20071961425/O/D20071425.pdf [date of access: 12.11.2023].
  17. Etcheverry, P., Grusak, M.A., Fleige, L.E. (2012). Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Front. Phys., 3(317), 1–22. https://doi.org/10.3389/fphys.2012.00317 DOI: https://doi.org/10.3389/fphys.2012.00317
  18. Frączek, K. (2010). Skład mikrobiocenotyczny drobnoustrojów biorących udział w procesach przemian azotu w glebie w otoczeniu składowiska odpadów komunalnych [Microbiocoenotic composition of nitrogen processing soil microorganisms around the municipal waste dumping site]. Woda Środ. Obszary Wiej., 10, 61–71.
  19. Galus-Barchan, A., Chmiel, M.J. (2009). Rola drobnoustrojów w pozyskiwaniu przez rośliny składników pokarmowych [The role of microorganisms in acqisition of nutrients by plants]. Kosmos, 1(322), 107–114. https://doi.org/10.36921/kos.2019_2483 DOI: https://doi.org/10.36921/kos.2019_2483
  20. Gimponger, D.M., Dobos, G., Schoenlechner, R., Kaul, H.-P. (2007). Yield and quality of grain amaranth (Amaranthus sp.) in Eastern Austria. Plant Soil Environ., 53(3), 105–112. Available: https://www.agriculturejournals.cz/pdfs/pse/2007/03/02.pdf [date of access: 10.11.2023]. DOI: https://doi.org/10.17221/2224-PSE
  21. Gurgul, E., Herman, B. (1994). Influence of nitrogen, phosphorus and potassium on chemical composition and activity of some enzymes in celery during its growth. Biol. Plant., 36(2), 261–265. DOI: https://doi.org/10.1007/BF02921097
  22. Hancock, R.D., Viola, R. (2005). Biosynthesis and catabolism of L-ascorbic acid in plants. CRC Crit. Rev. Plant Sci., 24, 167–188. https://doi.org/10.1080/07352680591002165 DOI: https://doi.org/10.1080/07352680591002165
  23. Hoidal, N., Gallardo, M.D., Jacobsen, S-E., Alandia, G. (2019). Amaranth as a dual-use crop for leafy greens and seeds: stable responses to leaf harvest across genotypes and environments. Front. Plant Sci. Sec. Crop Prod. Physiol. 10. https://doi.org/10.3389/fpls.2019.00817 DOI: https://doi.org/10.3389/fpls.2019.00817
  24. Jamiołkowska, A., Skwaryło-Bednarz, B., Patkowska, E., Buczkowska, H., Gałązka, A., Grądziel, J., Kopacki, M. (2020). Effect of mycorrhizal inoculation and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. Agronomy, 10, 11. https://doi.org/10.3390/agronomy10111693 DOI: https://doi.org/10.3390/agronomy10111693
  25. Jana J.C., Moktan P. (2012). Nitrate concentration of leafy vegetables: a survey of nitrite concentrations in retail fresh leafy vegetables from daily markets of different locations. ISABB. J. Food Agric. Sci., 3(1), 1–5. https://doi.org/10.5897/ISABB-JFAS11.033
  26. Jiménez-Aguilar, D.M., Grusak, M.A. (2017). Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy 5 vegetables. J. Food Compost. Anal., 58, 33–39. https://doi.org/10.1016/j.jfca.2017.01.005 DOI: https://doi.org/10.1016/j.jfca.2017.01.005
  27. Johnmark, N., Kinyi, H.W. (2021). Amaranth leaf extract protects against hydrogen peroxide induced oxidative stress in Drosophila melanogaster. BMC Res Notes, 17, 14(1), 188. https://doi.org/10.1186/s13104-021-05603-x DOI: https://doi.org/10.1186/s13104-021-05603-x
  28. Kambabazi, M.R., Okoth, M.W., Ngala, S., Njule, L., Vasanthakaalam, H. (2021). Evaluation of nutrient content in red kidney beans, amaranth leaves, sweet potato roots and carrots cultivated in Rwanda. AJFAND, 21, 4, 17801–17814. Available: www.ajol-file-journals_110_articles_209509_submission_proof_209509-1309-520125-1-10-20210627 (1).pdf [date of access: 11.10.2023]. DOI: https://doi.org/10.18697/ajfand.99.21095
  29. Karwowska, M., Kononiuk, A. (2020). Nitrates/Nitrites in food-risk for nitrosative stress and benefits. Antioxidants, 9(3), 241. https://doi.org/10.3390/antiox9030241 DOI: https://doi.org/10.3390/antiox9030241
  30. Łata, B., Żakowska-Biemans, S., Wrona, D. (2022). Apple antioxidant properties as an effect of N dose and rate – mycorrhization involvement: a long-term study. Antioxidants, 11, 2446. https://doi.org/10.3390/antiox11122446 DOI: https://doi.org/10.3390/antiox11122446
  31. Lee, S.K., Kader, A.A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Tech., 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2 DOI: https://doi.org/10.1016/S0925-5214(00)00133-2
  32. Li, H., Deng, Z., Liu, R., Zhu, H., Draves, J., Marcone, M., Sun, Y., Tsao, R. (2015). Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compost. Anal., 37, 75–81. https://doi.org/10.1016/j.jfca.2014.09.003 DOI: https://doi.org/10.1016/j.jfca.2014.09.003
  33. Nalborczyk, E., Wróblewska, E., Marcinkowska, B. (1994). Amaranthus – nowa roślina uprawna [Amaranthus – a new cultivated plant]. Wyd. SGGW, Warszawa, Poland, 5–20.
  34. O’Brien, G.K., Price, M.L. (2008). Amaranth: grain and vegetable types. Echo Technical Note.
  35. Ogwu, M.C. (2019). Value of Amaranthus [L.] species in Nigeria. In: Nutritional value of amaranth; Waisundara, V.Y. (ed.). IntechOpen. https://doi.org/10.5772/intechopen.86990 DOI: https://doi.org/10.5772/intechopen.86990
  36. Park, S.J., Sharma, A., Lee, H.J. (2020). A review of recent studies on the antioxidant activities of a third-millennium food: Amaranthus spp. Antioxidants, 9(12), 1236. https://doi.org/10.3390/antiox9121236 DOI: https://doi.org/10.3390/antiox9121236
  37. Pelech, L. (2021). Influence of cultivation methods on the formation of individual productivity of amaranth. Sci. Eur., 67, 21–27. Available: https://cyberleninka.ru/article/n/influence-of-cultivation-methods-on-the-formation-of-individual-productivity-of-amaranth/viewer [date of access: 12.09.2023].
  38. PN-90/A-75101/11. (1994). Produkty spożywcze. Przetwory owocowe i warzywne. Przygotowanie próbek i metody badań fizykochemicznych. Oznaczanie zawartości witaminy C [Food products. Fruit and vegetable preserves. Sample preparation and physicochemical testing methods. Determination of vitamin C content].
  39. Proestos, C., Lytoudi, K, Mavromelanidou, O.K., Zoumpoulakis, P., Sinanoglou, V.J. (2013). Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants, 2(1), 11–22. https://doi.org/10.3390/antiox2010011 DOI: https://doi.org/10.3390/antiox2010011
  40. Rastogi, A., Schukla, S. (2013). Amaranth: a new millenium crop of nutraceutical values. Crit. Rev. Food Sci. Nutr., 53(2), 109–125. https://doi.org/10.1080/10408398.2010.517878 DOI: https://doi.org/10.1080/10408398.2010.517876
  41. Riffaldi, R., Saviozzi, A., Levi-Minzi, R., Cardelli, R. (2002). Biochemical properties of a mediterranean soil as affected by long-term crop management systems. Soil Till. Res., 67, 109–114. https://doi.org/10.1016/ s0167-1987(02)00044-2 DOI: https://doi.org/10.1016/S0167-1987(02)00044-2
  42. Romanowicz, S., Krzepiłko A. (2013). Porównanie aktywności katalazy w różnych organach maliny powtarzającej Rubus idaeus L. odmiany Polana oraz w glebie pod jej uprawą, oznaczanej metodą wolumetryczną [Volumetric determination of catalase activity in various organs of the primocane-fruiting Polana variety of raspberry Rubus idaeus L. and in soilit is grown on]. Pol. J. Agron., 15, 49–53.
  43. Ruth, O.N., Unathi, K., Nomali, N., Chinsamy, M. (2021), Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: a mini-review. Appl. Sci., 11, 6879. https://doi.org/10.3390/app11156879 DOI: https://doi.org/10.3390/app11156879
  44. Sarker, U., Hossain, M.M., Oba, S. (2020). Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy. Sci Rep., 28, 10(1), 1336. https://doi.org/10.1038/s41598-020-57687-3 DOI: https://doi.org/10.1038/s41598-020-57687-3
  45. Sarker, U., Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci. Rep., 8, 16496. https://doi.org/10.1038/s41598-018-34944-0 DOI: https://doi.org/10.1038/s41598-018-34944-0
  46. Skwaryło-Bednarz, B., Brodowska, M.S., Brodowski, R. (2011). Evaluating the influence of varied NPK fertilization on yielding and microelements contents at amaranth (Amaranthus cruentus L.) depending on its cultivar and plant spacing. Acta Sci. Pol. Hortorum Cultus, 10(4), 245–261.
  47. Skwaryło-Bednarz, B., Jamiołkowska, A., Kopacki, M., Patkowska, E., Golan, K., Krasowska, P., Klikocka H. (2022). Assessment of catalase soil activity under amaranth cultivation not exposed to chemical protection methods. Acta Sci. Pol. Hortorum Cultus, 21(5), 101–110. https://doi.org/0.24326/asphc.2022.5.9 DOI: https://doi.org/10.24326/asphc.2022.5.9
  48. Skwaryło-Bednarz, B., Krzepiłko, A. (2008). Zróżnicowane nawożenie NPK w szerokorzędowej uprawie szarłatu (Amaranthus cruentus L.) a całkowita zdolność antyoksydacyjna liści oraz gleby pod tą rośliną [Diversified fertilization with NPK in wide-row cultivation of Amaranthus cruentus L. and total antioxidant capability of leaves and soil under amaranthus]. Acta Agrophys., 12(1), 173–181.
  49. Skwaryło-Bednarz, B., Krzepiłko, A. (2009a). Effect of different fertilization on enzyme activity in rhizosphere and non-rhizosphere of amaranth. Int. Agrophys., 23(4), 409–412.
  50. Skwaryło-Bednarz, B., Krzepiłko, A. (2009b). Effect of various NPK fertilizer doses on total antioxidant capacity of soil and amaranth leaves (Amaranthus cruentus L.). Int. Agrophys., 23(1), 61–65.
  51. Skwaryło-Bednarz, B., Krzepiłko, A. (2013). Effect of varied NPK fertilization on catalase activity of amaranth (Amaranthus cruentus L.). Ecol. Chem. Eng. S, 20(2), 321–329. https://doi.org/10.2478/eces-2013-0023 DOI: https://doi.org/10.2478/eces-2013-0023
  52. Skwaryło-Bednarz, B., Nalborczyk, E. (2006). Uprawa i wykorzystanie amarantusa [Cultivation and use of amaranth]. Wieś Jutra, 4(93), 52–55.
  53. Skwaryło-Bednarz, B., Stępniak, P., Jamiołkowska, A., Kopacki, M., Krzepiłko, A., Klikocka, H. (2020). Amaranth seeds as a source of nutrients and bioactive substances in human diet. Acta Sci. Pol. Hortorum Cultus, 19(6), 153–164. https://doi.org/10.24326/asphc.2020.6.13 DOI: https://doi.org/10.24326/asphc.2020.6.13
  54. Slabbert, M.M., Krüger, G.H.J. (2014). Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. S. Afr. J.Bot., 95, 123–112. https://doi.org/10.1016/j.sajb.2014.08.008 DOI: https://doi.org/10.1016/j.sajb.2014.08.008
  55. Telesiński, A., Nowak, J., Smolik, B., Dubowska, A., Skrzypiec, N. (2008). Effect of soil salinity on activity of antioxidant enzymes and content of ascorbic acid and phenols in bean (Phaseolus vulgaris L.) plants. J. Elementol., 13(3), 401–409. Available: http://www.uwm.edu.pl/jold/poj1332008/jurnal-11.pdf [date of access: 10.11.2023].
  56. Telesiński, A., Smolik, B., Skrzypiec, N., Nowak, J. (2009). Kształtowanie się aktywności katalazy i peroksydazy na tle zmian zawartości fluorków w roślinach fasoli po wprowadzeniu do gleby różnych dawek NaF [The formation of catalase and peroxidase activity against the background of changes of fluoride content in bean plants after addition of different doses of NaF to soil]. Ochr. Środ. Zasob. Natur., 41, 219–226.
  57. U.S. FDA. (2013). Guidance for industry: a food labeling guide. Available: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Labeling 397 Nutrition/ucm064928.htm [date of access: 17.11.2023].
  58. USDA. (2015). USDA National Nutrient Database for Standard Reference. Available: http://www.ars.usda.gov/ba/bhnrc/ndl [date of access: 17.11.2023].
  59. Venskutonis, P.R., Kraujalis P. (2013). Nutritional components of amaranth seeds and vegetables: a review on composition, properties and uses. Compr. Rev. Food Sci. F., 12, 381–412. https://doi.org/10.1111/1541-4337.12021 DOI: https://doi.org/10.1111/1541-4337.12021
  60. Weerasekara, A.C., Waisundara, V.Y. (2019). Amaranth as a pseudocereal in modern times: nutrients, taxonomy, morphology and cultivation. In: Waisundara, V.Y. (ed.), Nutritional value of amaranth. IntechOpen. https://doi.org/10.5772/intechopen.90927 DOI: https://doi.org/10.5772/intechopen.90927

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

<< < 79 80 81 82 83 84 85 86 87 88 > >> 

You may also start an advanced similarity search for this article.