Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 6 (2024)

Articles

Effect of growing pink tomato plants with LED supplementary lighting in a greenhouse covered with diffusion glass on post-harvest fruit quality

DOI: https://doi.org/10.24326/asphc.2024.5374
Submitted: April 21, 2024
Published: 2024-12-20

Abstract

It was found that the taste and quality of tomato fruit can significantly depend on the cultivar, growing conditions, fruit maturity stage, and post-harvest treatments. This study aimed to compare the effects of growing conditions, such as the use of diffusion glass and LED supplementary light (LED+D), with diffusion and standard glass and HPS lamps (HPS+D; HPS) on the quality and post-harvest shelf life of pink tomato fruit cv. ‘Tomimaru Muchoo F1’ in relation to fruit maturity stage and storage temperature. Fruits were harvested at three ripening stages – mature green (MG), breaker (B) and fully ripe (FR). Fruits of each maturity stage were stored under controlled conditions in a cold store at 12 °C for MG and B fruits and at 6 °C for FR fruits (at 85% relative humidity), and 20 °C for all ripening stages (at about 50% relative humidity). Physiological weight loss, dry weight, hardness of fruit, fruit color ( L*, a*, b*, a*/b*), total soluble solids, total sugars, ascorbic acid, titratable acidity, pH, lutein, lycopene, a-carotene, b-carotene were determined. Pink tomato fruits harvested from LED-lighted plants in combination with diffusion glass showed the highest shelf life and post-harvest quality compared to fruits from HPS-lighted plants and HPS-lighted crops in combination with diffusion glass. Stored pink tomato fruits from the LED+D combination were characterized by significantly higher total sugars, vitamin C and β-carotene content than fruits from the combination HPS and HPS+D. Tomato fruits, regardless of the maturity stage, at 20 °C had higher fresh weight loss and lower fruit firmness during storage compared to those stored at lower temperatures. Pink tomato fruits stored in higher temperature colored faster and contained a higher concentration of components such as total soluble solids or ascorbic acid and carotenoids.

References

  1. Aćamović-Djoković, G., Pavlović, R., Mladenović, J., Djurić, M. (2011). Vitamin C content of different types of lettuce varieties. Acta Agric. Serb., 17, 83–89.
  2. Affandi, F.Y., Pijnenburg, Ch., Verdonk, J.C., Woltering, E.J., Schouten, R.E. (2022). Growth temperature influences postharvest quality and cold tolerance of green harvested dwarf tomatoes during storage. Front. Sustain. Food Syst., 6, 876597. https://doi.org/10.3389/fsufs.2022.876597 DOI: https://doi.org/10.3389/fsufs.2022.876597
  3. Al-Gaadi, K.A., Zeyada, A.M., Tola, E., Alhamdan, A.M., Ahmed, K.A.M., Madugundu, R., Edrris, M.K. (2024). Impact of storage conditions on fruit color, firmness and total soluble solids of hydroponic tomatoes grown at different salinity levels. Appl. Sci., 14, 6315. https://doi.org/10.3390/app14146315 DOI: https://doi.org/10.3390/app14146315
  4. Appolloni, E., Orsini, F., Pennisi, G., Durany, X.G., Paucek, I., Gianquinto, G. (2021). Supplemental LED lighting effectively enhances the yield and quality of greenhouse truss tomato production: results of a meta-analysis. LED lighting for greenhouse tomato: a review. Front. Plant Sci., 12, 596927. https://doi.org/10.3389/fpls.2021.596927 DOI: https://doi.org/10.3389/fpls.2021.596927
  5. Arah, I.K., Amaglo, H., Kumah, E.K., Ofori, H. (2015). Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: a mini review. Int. J. Agron., 478041. https://doi.org/10.1155/2015/478041 DOI: https://doi.org/10.1155/2015/478041
  6. Brandt, S., Pék, Z., Barna, É., Lugasi, A., Helyes, L. (2006). Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agric., 86, 568–572. https://doi.org/10.1002/jsfa.2390 DOI: https://doi.org/10.1002/jsfa.2390
  7. Chiesa, L., Diaz, L., Cascone, O., Pañak, K., Camperi, S., Frezza, D., Fraguas, A. (1998). Texture changes on normal and long-shelf life tomato (Lycopersicon esculentum Mill.) fruit ripening. Acta Hortic., 464, 488. DOI: https://doi.org/10.17660/ActaHortic.1998.464.82
  8. Dannehl, D., Schwend, T., Veit, D., Schmidt, U. (2021). Increase of yield, lycopene, and lutein content in tomatoes grown under continuous PAR spectrum LED lighting. Front Plant Sci., 12, 611236. https://doi.org/10.3389/fpls.2021.611236 DOI: https://doi.org/10.3389/fpls.2021.611236
  9. Dhakal, R., Baek, K.H., 2014. Metabolic alternation in the accumulation of free amino acids and γ-aminobutyric acid in postharvest mature green tomatoes following irradiation with blue light. Hortic. Environ. Biotechnol., 55, 36–41. https://doi.org/10.1007/s13580-014-0125-3 DOI: https://doi.org/10.1007/s13580-014-0125-3
  10. Diretto, G., Frusciante, S., Fabbri, C., Schauer, N., Busta, L., Wang, Z., Matas, A.J., Fiore, A., Rose, J.K.C., Fernie, A.R., Jetter, R., Mattei, B., Giovannoni, J., Giuliano, G. (2020). Manipulation of β-carotene levels in tomato fruits results in increased ABA content and extended shelf life. Plant Biotechnol. J., 18, 1185–1199. https://doi.org/10.1111/pbi.13283 DOI: https://doi.org/10.1111/pbi.13283
  11. Dong, F., Wang, C.Z., Sun, X.D., Bao, Z.L., Dong, C., Sun, C.H, et al. (2019). Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit. Plant Growth Regul., 88, 267–82. https://doi.org/10.1007/s10725-019-00506-1 DOI: https://doi.org/10.1007/s10725-019-00506-1
  12. D'Souza, C., Yuk, H.G., Khoo, G.H., Zhou, W. (2015). Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Compreh. Revi. Food Sci. Food Safety, 14, 719–740. DOI: https://doi.org/10.1111/1541-4337.12155
  13. Dueck, T., Janse, J., Li, T., Kempkes, F., Eveleens, B. (2012). Influence of of low-haze diffuse glass on the growth and production of tomato. Acta Hortic., 956, 75–82. DOI: https://doi.org/10.17660/ActaHortic.2012.956.6
  14. Garbowicz, K., Liu, Z., Alseekh, S., Tieman, D., Taylor, M., Kuhalskaya, A. (2018). Quantitative trait loci analysis identifies a prominent gene involved in the production of fatty acid-derived flavor volatiles in tomato. Mol. Plant, 11, 1147–65. https://doi.org/10.1016/j.molp.2018.06.003 DOI: https://doi.org/10.1016/j.molp.2018.06.003
  15. Getinet, H., Seyoum, T., Woldetsadik, K. (2008). The effect of cultivar, maturity stage and storage environment on quality of tomatoes. J. Food Eng., 87, 467–478. DOI: https://doi.org/10.1016/j.jfoodeng.2007.12.031
  16. Gómez, C., Mitchell, C.A. (2016). In search of an optimized supplemental lighting spectrum for greenhouse tomato production with intra-canopy lighting Acta Hortic., 1134, 57–62. DOI: https://doi.org/10.17660/ActaHortic.2016.1134.8
  17. Gormley, T.R., Maher, M.J. (1990). Tomato fruit quality-an interdisciplinary. Prof. Hortic., 4, 7–12.
  18. Guo, X., Hao, X., Khosla, S., Kumar, K.G.S., Cao, R., Bennett, N., 2016. Effect of LED inter-lighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse. Acta Hortic., 1134, 71–78. DOI: https://doi.org/10.17660/ActaHortic.2016.1134.10
  19. Hemming, S., Dueck, T., Janse, J., van Noort, F. (2008). The effect of diffuse light on crops. Acta Hortic., 801, 1293–1300. DOI: https://doi.org/10.17660/ActaHortic.2008.801.158
  20. Holsteens, K., Moerkens, R., Bram Van de Poel, B., Vanlommel, W. (2020). The effect of low-haze diffuse glass on greenhouse tomato and bell pepper production and light distribution properties. Plants, 9, 806. https://doi.org/10.3390/plants9070806 DOI: https://doi.org/10.3390/plants9070806
  21. Javanmardi, J., Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol. Technol., 41, 151–155. https://doi.org/10.1016/j.postharvbio.2006.03.008 DOI: https://doi.org/10.1016/j.postharvbio.2006.03.008
  22. Khairia, A.N., Falaha, M.A.F., Suyantohadia, A., Takahashib, N., Nishina, H. (2015). Effect of storage temperatures on color of tomato fruit (Solanum lycopersicum Mill.) cultivated under moderate water stresstreatment. Agric. Agric. Sci. Proc., 3, 178–183. DOI: https://doi.org/10.1016/j.aaspro.2015.01.035
  23. Kami, C., Lorrain, S., Hornitschek, P., Fankhauser, C. (2010). Light-regulated plant growth and development. Curr. Top. Dev. Biol., 91, 29–66. DOI: https://doi.org/10.1016/S0070-2153(10)91002-8
  24. Kim, H.-J., Yang, T., Choi, S., Wang, Y.-J., Lin, M.-J., Liceaga, A.M. (2020). Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes. Sci. Hortic., 261, 108985. https://doi.org/10.1016/j.scienta.2019.108985 DOI: https://doi.org/10.1016/j.scienta.2019.108985
  25. Kim, Y.X., Son, S., Lee, S., Jung, E., Lee, Y., Sung, J., Lee, C. (2021). Combined effects of nutrients × water × light on metabolite composition in tomato fruits (Solanum lycopersicum L.). Plants, 10, 1437. https://doi.org/10.3390/plants10071437 DOI: https://doi.org/10.3390/plants10071437
  26. Klunklin, W., Savage, G. (2017). Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods, 6, 56. https://doi.org/10.3390/foods6080056 DOI: https://doi.org/10.3390/foods6080056
  27. Kong, D.H., Zhao, W.T., Ma, Y., Liang, H., Zhao, X.Y. (2020). Effects of light-emitting diode illumination on the quality of fresh-cut cherry tomatoes during refrigerated storage. Int. J. Food Sci. Tech., 56, 2041–2052. https://doi.org/10.1111/ijfs.14836 DOI: https://doi.org/10.1111/ijfs.14836
  28. Kumar, K.G.S., Hao, X., Khosla, S., Guo, X., Bennett, N. (2016). Comparison of HPS lighting and hybrid lighting with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production. Acta Hortic., 1134, 111–118. DOI: https://doi.org/10.17660/ActaHortic.2016.1134.15
  29. Lenucci, M.S., Cadinu, D., Taurino, M., Piro, G., Dalessandro, G. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem., 54, 2606–2613. https://doi.org/10.1021/jf052920c DOI: https://doi.org/10.1021/jf052920c
  30. Li, J., Di, T., Bai, J. (2019). Distribution of volatile compounds in different fruit structures in four tomato cultivars. Molecules, 24, 2594. https://doi.org/10.3390/molecules24142594 DOI: https://doi.org/10.3390/molecules24142594
  31. Li, T., Heuvelink, E., Dueck, T.A., Janse, J., Gort, G., Marcelis, L.F. (2014a). Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Ann. Bot., 114, 145–156. https://doi.org/10.1093/aob/mcu071 DOI: https://doi.org/10.1093/aob/mcu071
  32. Li, T., Heuvelink, E., van Noort, F., Kromdijk, J., Marcelis, L.F.M. (2014b). Responses of two Anthurium cultivars to high daily integrals of diffuse light. Sci. Hortic., 179, 306–313. https://doi.org/10.1016/j.scienta.2014.09.039 DOI: https://doi.org/10.1016/j.scienta.2014.09.039
  33. Li, Y., Liu, C., Shi, Q.H., Yang, .FJ., Wei, M. (2021). Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content. Environ Exp Bot., 185, 104407. https://doi.org/10.1016/j.envexpbot.2021.104407 DOI: https://doi.org/10.1016/j.envexpbot.2021.104407
  34. Liu, H.R., Meng, F.L., Miao, H.Y., Chen, S.S., Yin, T.T., Hu, S.S. (2018). Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chem., 263, 194–200. https://doi.org/10.1016/j.foodchem.2018.04.124 DOI: https://doi.org/10.1016/j.foodchem.2018.04.124
  35. Ntagkas, N., Woltering, E., Bouras, S., de Vos, R.C.H., Dieleman, J.A., Nicole, C.C.S., Labrie, C., Marcelis, L.F.M. (2019). Light-induced vitamin C accumulation in tomato fruits is independent of carbohydrate availability. Plants, 8, 86, https://doi.org/10.3390/plants8040086 DOI: https://doi.org/10.3390/plants8040086
  36. Olle, M., Alsina, I. (2019). Influence of wavelength of light on growth, yield and nutritional quality of greenhouse vegetables Proc. Latvian Acad. Sci., sec. B, 73, 1–19. https://doi.org/10.2478/prolas-2019-0001 DOI: https://doi.org/10.2478/prolas-2019-0001
  37. Olle, M., Viršile, A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci., 22, 223–234. https://doi.org/10.23986/afsci.7897 DOI: https://doi.org/10.23986/afsci.7897
  38. Panjai, L., Noga, G., Hunsche, M., Fiebig, A. (2019). Optimal red light irradiation time to increase health-promoting compounds in tomato fruit postharvest. Sci Hortic., 251, 189–196. https://doi.org/10.1016/j.scienta.2019.03.019 DOI: https://doi.org/10.1016/j.scienta.2019.03.019
  39. Paponov, M., Kechasov, D., Lacek, J., Verheul, M.J., Paponov, I.A. (2019). Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Front Plant Sci., 10, 1656. https://doi.org/10.3389/fpls.2019.01656 DOI: https://doi.org/10.3389/fpls.2019.01656
  40. Paucek, I., Pennisi, G., Pistillo, A., Appolloni, E., Crepaldi, A., Calegari, B. (2020). Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean. Agronomy, 10, 1002. https://doi.org/10.3390/agronomy10071002 DOI: https://doi.org/10.3390/agronomy10071002
  41. Rab, A., Rehman, H., Sajid, M., Nawab, K., Ali, K. (2013). Harvest stages and pre-cooling influence the quality and storage life of tomato fruit. J. Anim. Plant Sci., 23, 1347–1357.
  42. Selahle, M.K., Sivakumar, D., Soundy, P. (2014). Effect of photo-selective nettings on post-harvest quality and bioactive compounds in selected tomato cultivars. J. Sci. Food Agric., 94, 2187–2195. https://doi.org/10.1002/jsfa.6536 DOI: https://doi.org/10.1002/jsfa.6536
  43. Wang, S., Jin, N., Jin, L., Xiao, X., Hu, L., Liu, Z., Yu, J. (2022a). Response of tomato fruit quality depends on period of LED supplementary light. Front. Nutr., 9, 833723.
  44. Wang, S., Jin, N., Jin, L., Xiao, X., Hu, L., Liu, Z., Wu, Y., Xie, Y., Zhu, W., Lyu, J., Yu, J. (2022b). Response of tomato fruit quality depends on period of LED supplementary light. Front. Nutr., 9, 833723. https://doi.org/10.3389/fnut.2022.833723 DOI: https://doi.org/10.3389/fnut.2022.833723
  45. Wang, W., Liu, D.X., Qin, M., Xie, Z.B., Chen, R.Y., Zhang, Y.T. (2021). Effects of supplemental lighting on potassium transport and fruit coloring of tomatoes grown in hydroponics. Int. J. Mol. Sci., 22, 2687. https://doi.org/10.3390/ijms22052687 DOI: https://doi.org/10.3390/ijms22052687
  46. Zeng, X., Wang, L., Fu, Y., Zuo, J., Li, Y., Zhao, J., Cao, R., Li, J. (2022). Effects of methyl salicylate pre-treatment on the volatile profiles and key gene expressions in tomatoes stored at low temperature Front. Nutr., 9, 1018534. https://doi.org/10.3389/fnut.2022.1018534 DOI: https://doi.org/10.3389/fnut.2022.1018534
  47. Zhang, Y.T., Zhang, Y.Q., Yang, Q.C., Tao, L.I. (2019). Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs. J. Integr. Agric., 18, 62–69. https://doi.org/10.1016/s2095-3119(18)62130-6 DOI: https://doi.org/10.1016/S2095-3119(18)62130-6

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.