Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Bacteriostatic and antioxidant properties of paulownia leaf extracts (Paulownia spp.) as natural products in crop protection

DOI: https://doi.org/10.24326/asphc.2025.5428
Submitted: September 13, 2024
Published: 2025-02-20

Abstract

Paulownia leaf extracts were tested for their bacteriostatic and antioxidant properties against six pathogenic bacteria in vegetable and fruit crops. Paulownia leaf extracts were most effective against the Clavibacter michiganensis ssp. michiganensis and Xanthomonas hortorum pv. carotae. Paulownia extracts were less effective against Agrobacterium tumefaciens, Pseudomonas syringae pv. lachrymans and Pseudomonas syringae pv. tomato. Only Erwinia carotovora was resistant to the tested plant extracts. The type of extraction solvent significantly impacts the antibacterial activity and the flavonoid and polyphenol contents of plant extracts. Acetone and alcoholic extracts had a higher content of flavonoid and polyphenolic compounds than water extracts, which resulted in their better bacteriostatic properties. The growth inhibition zones of the tested bacteria and the contents of flavonoids and polyphenols were significantly correlated. However, the bacteriostatic properties and antioxidant activity were not significantly correlated.

References

  1. Abozed, S.S., El-Kalyoubi, M., Abdelrashid, A., Salama, M.F. (2014). Total phenolic contents and antioxidant activities of various solvent extracts from whole wheat and bran. Ann. Agric. Sci., 59(1), 63–67. https://doi.org/10.1016/j.aoas.2014.06.009
  2. Adamu, M., Naidoo, V., Eloff, J.N. (2014). The antibacterial activity, antioxidant activity and selectivity index of leaf extracts of thirteen South African tree species used in ethnoveterinary medicine to treat helminth infections. BMC Vet. Res., 10, 52. https://doi.org/10.1186/1746-6148-10-52
  3. Aksoy, H.M., Arslanoğlu, Ş.F., Edbeib, M.F., Kaya, Y., Marakli, S. (2021). Antibacterial activity of Calendula officinalis and Echinacea purpurea extracts against the causal agent of tomatoes’ bacterial canker: Clavibacter michiganensis subsp. michiganensis. Bol. Latinoam. Caribe Plantas Med. Aromat., 20(5), 496–502. https://doi.org/10.37360/blacpma.21.20.5.36
  4. Al-Sagheer, A.A., Abd El-Hack, M.E., Alagawany, M., Naiel, M.A., Mahgoub, S.A., Badr, M.M., Hussein, E.O.S., Alowaimer, A.N., Swelum, A.A. (2019). Paulownia leaves as a new feed resource: chemical composition and effects on growth, carcasses, digestibility, blood biochemistry, and intestinal bacterial populations of growing rabbits. Animals, 9, 95. https://doi.org/10.3390/ani9030095
  5. Barbu, M.C., Buresova, K., Tudor, E.M., Petutschnigg, A. (2022). Physical and mechanical properties of Paulownia tomentosa × elongata sawn wood from Spanish, Bulgarian and Serbian plantations. Forests, 13, 1543. https://doi.org/10.3390/f13101543
  6. Basri, D.F., Nor, N.H.M. (2014). Phytoconstituent screening and antibacterial activity of the leaf extracts from Canarium odontophyllum Miq. Am. J. Plant Sci., 5, 2878–2888. http://dx.doi.org/10.4236/ajps.2014.519303
  7. Bdliya, B.S., Dahiru, B. (2006). Efficacy of some plant extracts on the control of potato tuber soft rot caused by Erwinia carotovora ssp. carotovora. J. Plant Prot. Res., 46, 285–294.
  8. Bertoncelj, J., Doberšek, U., Jamnik, M., Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem., 105, 822– 828. https://doi.org/10.1016/j.foodchem.2007.01.060
  9. Bhardwaj, S.K., Laura, J.S. (2008). Antibacterial activity of some plant extracts against pathogenic bacteria Erwinia carotovora subsp. carotovora. Potato J., 35(1–2), 72–77.
  10. Dirar, A.I., Alsaadi, D.H.M., Wada, M., Mohamed, M.A., Watanabe, T., Devkota, H.P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot., 120, 261–267. https://doi.org/10.1016/j.sajb.2018.07.003
  11. Doumett, S., Lamperi, L., Checchini, L., Azzarello, E., Mugnai, S., Mancuso, S., Petruzzelli, G., Del Bubba, M. (2008). Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere, 72(10), 1481–1490. https://doi.org/10.1016/j.chemosphere.2008.04.083
  12. Dżugan, M., Miłek, M., Grabek-Lejko, D., Hęclik, J., Jacek, B., Litwińczuk, W. (2021). Antioxidant activity, polyphenolic profiles and antibacterial properties of leaf extract of various Paulownia spp. clones. Agronomy, 11, 2001. https://doi.org/10.3390/agronomy11102001
  13. El Mannoubi, I. (2023). Impact of different solvents on ex¬traction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. J. Umm Al-Qura Univ. Appll. Sci., 9, 176–184. https://doi.org/10.1007/s43994-023-00031-y
  14. Ferdosi, M.F.H., Khan, I.H., Javaid, A., Sattar, T. (2021). Antibacterial activity of essential oil of Paulownia fortunei (Seem.) Hemsl. Flowers. 3, 27–32.
  15. García-Morote, F.A., López-Serrano, F.R., Martínez-García, E., Andrés-Abellán, M., Dadi, T., Candel, D., Rubio, E., Lucas-Borja, M.E. (2014). Stem biomass production of Paulownia elongata × P. fortunei under low irrigation in a semi-arid environment. Forests, 5, 2505–2520. https://doi.org/10.3390/f5102505
  16. Gniewosz, M., Kraśniewska, K., Węglarz, Z., Przybył, J.L. (2012). Porównanie przeciwdrobnoustrojowej aktywności etanolowego i wodnego ekstraktu z szałwii lekarskiej (Salvia officinalis L.) [The comparison of antimicrobial properties of ethanolic and aqueous extracts from sage (Salvia officinalis L.)]. Bromatol. Chem. Toksykol., 45, 743–748.
  17. Godlewska K., Ronga D., Michalak I. (2021). Plant extracts – importance in sustainable agriculture. Ital. J. Agron., 16, 1851. https://doi.org/10.4081/ija.2021.1851
  18. Gong, Y., Liu, X., He, W.H., Xu, H.G., Yuan, F., Gao, Y.X. (2012). Investigation into the antioxidant activity and chemical composition of alcoholic extracts from defatted marigold (Tagetes erecta L.) residue. Fitoterapia, 83(3), 481–489. https://doi.org/10.1016/j.fitote.2011.12.013
  19. Guo, N., Zhai, X.Q., Fan, G.Q. (2023). Chemical composition, health benefits and future prospects of paulownia flowers: a review. Food Chem., 412, 135496. https://doi.org/10.1016/j.foodchem.2023.135496
  20. Hawrył, A., Hawrył, M., Litwińczuk, W., Bogucka-Kocka, A. (2020). Thin-layer chromatographic fingerprint of selected Paulownia species with chemometrics and antioxidant activity. J. Liq. Chromatogr. Relat. Technol., 43(11–12), 367–374. https://doi.org/10.1080/10826076.2020.1725552
  21. Hęś, M., Górecka, D., Dziedzic, K. (2012). Antioxidant properties of extracts from buckwheat by-products. Acta Sci. Pol. Technol. Aliment., 11(2), 167–174.
  22. Huang, H., Lechniak, D., Szumacher Strabel, M., Patra, K.A., Kozłowska, M., Kolodziejski, P., Gao, M., Ślusarczyk, S., Petrič, D., Cieslak, A. (2022). The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J. Anim. Sci. Biotechnol., 13, 104. https://doi.org/10.1186/s40104-022-00745-9
  23. İnci, Ş., Kadioğlu, Dalkiliç, L., Kirbağ, S., Dalkiliç, S. (2021). Determination of the antimicrobial, antioxidant and cytotoxic activity of Paulownia tomentosa Steud. KSÜ Tarım ve Doğa Derg., 24(4), 701–706. https://doi.org/10.18016/ksutarimdoga.vi.804177
  24. Ispiryan, A., Atkociuniene, V., Makstutiene, N., Sarkinas, A., Salaseviciene, A., Urbonaviciene, D., Viskelis, J., Pakeltiene, R., Raudone, L. (2024). Correlation between antimicrobial activity values and total phenolic content/ antioxidant activity in Rubus idaeus L.. Plants, 13, 504. https://doi.org/10.3390/plants13040504
  25. Jacek, B., Litwińczuk, W. (2016). The selected biomass properties of Paulownia tomentosa strains cultivated for energy purposes in the first two years of vegetation. Ann. Wars. Univ. Life Sci. SGGW, Anim. Sci., Agriculture 68, Warszawa, 61–66.
  26. Jacobo-Salcedo, M. del R., Gonzalez-Espindola. L.A., Alonso-Castro. A.J., Gonzalez-Martinez. M. del R., Domínguez. F., Garcia-Carranca, A. (2011). Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds. Nat. Prod. Commun., 6(8), 1121–1124.
  27. Kadlec, J., Novosadová, K., Pokornỳ, R. (2021). Preliminary results from a plantation of a semi-arid hybrid of Paulownia Clone in Vitro 112® under conditions of the Czech Republic from the first two years. Baltic Forestry, 27(1), 477–484. https://doi.org/10.46490/BF477
  28. Kahla, Y., Zouari-Bouassida, K., Rezgui, F., Trigui, M., Tounsi, S. (2017). Efficacy of Eucalyptus cinerea as a source of bioactive compounds for curative biocontrol of crown gall caused by Agrobacterium tumefaciens strain B6. BioMed Res. Int., 2017, 1–10. https://doi. org/10.1155/2017/9308063
  29. Karthikumar, S., Vigneswari, K., Jegatheesan, K. (2007). Screening of antibacterial and antioxidant activities of leaves of Eclipta prostrata (L). Sci. Res. Essays, 2(4), 101–104.
  30. Koohsari, H., Ghaemi, E.A., Sadegh Sheshpoli, M., Jahedi, M., Zahiri, M. (2015). The investigation of antibacterial activity of selected native plants from North of Iran. J. Med. Life, 8(2), 38–42.
  31. Krupiński, G., Sobiczewski, P. (2001). Wpływ ekstraktów roślinnych na wzrost Erwinia amylovora (Burrill) Winslow et al. [Effect of plant extracts on the growth of Erwinia amylovora (Burrill) Winslow et al.]. Acta Agrobot. 54, 81–91.
  32. Krzepiłko, A., Kordowska-Wiater, M., Sosnowska, B., Pytka, M. (2020). Oddziaływanie ekstraktów roślinnych na drobnoustroje [The effect of plant extracts on microorganisms]. Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie [Publishing House of the University of Life Sciences in Lublin], Lublin, 1–112.
  33. Liga, S., Paul, C., Péter, F. (2023). Flavonoids: overview of biosynthesis, biological activity, and current extraction techniques. Plants, 12, 2732. https://doi.org/10.3390/plants12142732
  34. Limsuwan, S., Subhadhirasakul, S., Voravuthikunchai, S.P. (2009). Medicinal plants with significant activity against important pathogenic bacteria. Pharm. Biol., 47(8), 683–689. https://doi.org/10.1080/13880200902930415
  35. López, F., Pérez, A., Zamudio, M.A.M., De Alva, H.E., García, J.C. (2012). Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenerg., 45, 77–86. https://doi.org/10.1016/j.biombioe.2012.05.010
  36. Makhubu, F.N., Khosa, M.C., McGaw, L.J. (2023). Chemical profiling and inhibitory effects of selected South African plants against phytopathogenic bacteria and fungi of tomato. S. Afr. J. Bot., 163, 729–735. https://doi.org/10.1016/j.sajb.2023.11.028
  37. Mańka, M., Grzywacz, A. (2023). Fitopatologia leśna [Forest phytopathology]. Wydawnictwo Uniwersytetu Przy-rodniczego w Poznaniu [The Publishing House of the Poznań University of Life Sciences], Poznań, 337–339, 461–464.
  38. Michiels, J.A., Kevers, C., Pincemail, J., Defraigne, J.O., Dommes, J. (2012). Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem., 130, 986–993. https://doi.org/10.1016/j.foodchem.2011.07.117
  39. Modarresi-Chahardehi, A., Ibrahim, D., Fariza-Sulaiman, S., Mousavi, L. (2012). Screening antimicrobial activity of various extracts of Urtica dioica. Rev. Biol. Trop., 60(4), 1567–1576. https://doi.org/10.15517/rbt.v60i4.2074.
  40. Morote, L., Rubio-Moraga, A., Lopez-Jiménez, A.J., Argandoña, J., Niza, E., Ahrazem, O., Gómez-Gómez, L. (2023). A carotenoid cleavage dioxygenase 4 from Paulownia tomentosa determines visual and aroma signals in flowers. Plant Sci., 329, 111609. https://doi.org/10.1016/j.plantsci.2023.111609
  41. Munhoz, V.M., Longhini, R., Souza, J.R.P., Zequi, J.A.C., Leite Mello, E.V.S., Lopes, G.C., Mello, J.C.P. (2014). Extraction of flavonoids from Tagetes patula: process optimization and screening for biological activity. Rev. Bras. Farmacogn., 24, 576–583. http://dx.doi.org/10.1016/j.bjp.2014.10.001
  42. Nabatanzi, A. (2018). In-vitro antibacterial activity of Allium sativum L. clove extract against Agrobacterium tume¬faciens. Adv. Res., 16(6), 1–7. https://doi.org/10.9734/AIR/2018/44151
  43. Na-Young, J., Ki-Tae, K. (2019). Antioxidant activity and anti-inflammatory effect of extracts from Paulownia tomentosa in LPS-stimulated RAW264.7 macro¬phage cells. J. Korean Med., 40(4), 72–83. https://doi.org/10.13048/jkm.19042
  44. Nino, J., Anjum, N., Tripathi, Y.C. (2016). Phytochemical screening and evaluation of polyphenols, flavonoids and antioxidant activity of Prunus cerasoids D. Don leaves. J. Pharm. Res., 10(7), 502–508.
  45. Njagi, A., Nyamwange, M.M., Njeru, E.M., Birgen, J.K. (2021). Antibacterial effect of Artemisia and ginger extracts in controlling Agrobacterium tumefaciens in roses. J. Floricult. Landsc., 7, 1–5. https://doi.org/10.25081/jf¬cls.2021.v7.6386
  46. Okla, M.K., Alamri, S.A., Salem, M.Z.M., Ali, H.M., Behiry, S.I., Nasser, R.A., Alaraidh, I.A., Al-Ghtani, S.M., Soufan, W. (2019). Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of sour orange (Citrus aurantium L.). Processes, 7, 363. https://doi.org/10.3390/pr7060363
  47. Palaiogiannis, D., Chatzimitakos, T., Athanasiadis, V., Bozinou, E., Makris, D.P., Lalas, S.I. (2023). Successive solvent extraction of polyphenols and flavonoids from Cistus creticus L. leaves. Oxygen, 3, 274–286. https://doi.org/10.3390/oxygen3030018
  48. Parekh, J., Chanda, S. (2007). In vitro antibacterial activity of the crude methanol extract of Woodfordia fruticosa Kurz. flower (Lythraceae). Braz. J. Microbiol., 38, 204–207. https://doi.org/10.1590/S1517-83822007000200004
  49. Parekh, J., Jadeja, D., Chanda, S. (2005). Efficacy of aqueous and methanol extracts of some medicinal plants for po¬tential antibacterial activity. Turk. J. Biol., 29, 203–210.
  50. Peritore-Galve, F.C., Tancos, M.A., Smart, C.D. (2021). Bacterial canker of tomato: revisiting a global and economically damaging seedborne pathogen. Plant Dis., 105, 1581–1595. https://doi.org/10.1094/PDIS-08-20-1732-FE
  51. Popova, T.P., Baykov, B.D. (2013). Antimicrobial activity of aqueous extracts of leaves and silage from Paulownia elongata. Am. J. Biol. Chem. Pharm. Sci., 1(2), 8–15.
  52. Proestos, C., Lytoudi, K., Mavromelanidou, O.K., Zoum¬poulakis, P., Sinanoglou, V.J. (2013). Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants, 2, 11–22. https://doi.org/10.3390/antiox2010011
  53. Rai, A.K., Singh, S.P., Chauhan, L., Goyal, S. (2000). Paulownia fortunei – a new fibre source for pulp and paper. IPPTA: Q. J. Indian Pulp Pap. Tech. Assoc., 12, 51–56.
  54. Rashmi H.B., Negi P.S. (2022). Chemistry of plant extracts. In: Plant extracts: applications in the food industry, 39–73.
  55. Safari, M., Ahmady-Asbchin, S. (2019). Evaluation of antioxidant and antibacterial activities of methanolic extract of medlar (Mespilus germanica L.) leaves. Biotechnol. Biotechnol. Equip., 33(1), 372–378. https://doi.org/10.1080/13102818.2019.1577701
  56. Salih, A.M., Al-Qurainy, F., Nadeem, M., Tarroum, M., Khan, S., Shaikhaldein, H.O., Al Hashimi, A., Alfagham, A. Alkahtani, J. (2021). Optimization method for phenolic compounds extraction from medicinal plant (Juniperus procera) and phytochemicals screening. Molecules, 26, 7454. https://doi.org/10.3390/molecules26247454
  57. Sasadara, M.M.V., Wirawan, I.G.P. (2021). Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed. IOP Conf. Series: Earth and Environmental Science, 712, 012005. https://doi.org/10.1088/1755-1315/712/1/012005
  58. Schneiderová, K., Šmetkal, K. (2015). Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem. Rev., 14, 799–833. https://doi.org/10.1007/s11101-014-9376-y
  59. Scott, J.C., Dung, J.K.S. (2020). Distribution of Xanthomonas hortorum pv. carotae populations in naturally infested carrot seed lots. Plant Dis., 104(8), 2144–2148. https://doi.org/10.1094/PDIS-12-19-2674-RE
  60. Sedlar, T., Šefc, B., Drvodelić, D., Jambreković, B., Kučinić, M., Ištok, I. (2020). Physical properties of juvenile wood of two paulownia hybrids. Drvna Industrija, 71, 179–184. https://doi.org/10.5552/drvind.2020.1964
  61. Siddique, M., Din, N., Ahmad, M., Asad, A., Naz, I., Alam, S.S., Ullah, N. (2020). Bioefficacy of some aqueous phytoextracts against Clavibacter michiganensis subsp. michiganensis (Smith), the cause of bacterial canker of tomato. Gesunde Pflanzen 72, 207–217. https://doi.org/10.1007/s10343-020-00503-9
  62. Sithisarn, P., Rojsanga, P., Sithisarn, P., Kongkiatpaiboon, S. (2015). Antioxidant activity and antibacterial effects on clinical isolated Streptococcus suis and Staphylococcus intermedius of extracts from several parts of Cladogynos orientalis and their phytochemical screenings. Evid.-Based Complem. Altern. Med., 1–8. http://dx.doi.org/10.1155/2015/908242
  63. Škovranová, G., Molčanová, L., Jug, B., Jug, D., Klančnik, A., Smole-Možina, S., Treml, J., Tušek-Žnidarič, M., Sychrová, A. (2024). Perspectives on antimicrobial properties of Paulownia tomentosa Steud. fruit products in the control of Staphylococcus aureus infections. J. Ethnopharmacol., 321, 117461. https://doi.org/10.1016/j.jep.2023.117461
  64. Skroza, D., Šimat, V., Smole-Možina, S., Katalinić, V., Boban, N., Mekinić, I.G. (2019). Interactions of resveratrol with other phenolics and activity against foo-borne pathogens. Food Sci. Nutr., 7, 2312–2318. https://doi.org/10.1002/fsn3.1073
  65. Sławińska, N., Zając, J., Olas, B. (2023). Paulownia organs as interesting new sources of bioactive compounds. Int. J. Mol. Sci., 24(2), 1676. https://doi.org/10.3390/ijms24021676
  66. Sowndhararajan, K., Kang, S.C. (2013). Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn. Saudi J. Biol. Sci., 20, 319–325. https://doi.org/10.1016/j.sjbs.2012.12.005
  67. Tagousop, C.N., Tamokou, J.-de-D., Ekom, S.E., Ngnokam, D., Voutquenne-Nazabadioko, L. (2018). Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement. Altern. Med., 18, 252. https://doi.org/10.1186/s12906-018-2321-7
  68. Talibi, I., Amkraz, N., Askarne, L., Msanda, F., Saadi, B., Boudyach, E.H., Boubaker, H., Bouizgarne, B., Ait Ben Aoumar, A. (2011). Antibacterial activity of Moroccan plant extracts against Clavibacter michiganensis subsp. michiganensis, the causal agent of tomatoes’ bacterial canker. J. Med. Plant Res, 5(17), 4332–4338.
  69. Tomsone, L., Kruma, Z., Galoburda, R. (2012). Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng., 6(4), 236–241.
  70. Turkmen, N., Sari, F., Velioglu, Y.S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem., 99, 835–841. https://doi.org/10.1016/j.foodchem.2005.08.034
  71. Tzvetkova, N., Miladinova, K., Ivanova, K., Georgieva, T., Geneva, M., Markovska, Y. (2015). Possibility of using two Paulownia lines as a tool for remediation of heavy metal contaminated soil. J. Environ. Biol., 36, 145–151.
  72. Uğuz, Ö., Kara, Y. (2019). Determination of antioxidant potential in the leaf and flower of Paulownia tomentosa. Int. J. Second. Metab., 6(2), 106–112. https://doi.org/10.21448/ijsm.537166
  73. Viswanath, H.S., Bhat, K.A., Bhat, N.A., Wani, T.A., Mughal, M.N. (2018). Antibacterial efficacy of aqueous plant extracts against storage soft rot of potato caused by Erwinia carotovora. Int. J. Curr. Microbiol. Appl. Sci., 7(1), 2630–2639. https://doi.org/10.20546/ijcmas.2018.701.314
  74. Woods, V.B. (2008). Paulownia as a novel biomass crop for Northern Ireland? A review of current knowledge. Occasional publication of Agri-Food and Biosciences Institute, 7, 1–47.
  75. Yadav, N.K., Vaidya, B.N., Henderson, K., Lee, J.F., Stewart, W.M., Dhekney, S.A, Joshee, N. (2013). A review of Paulownia biotechnology: a short rotation, fast growing multipurpose bioenergy tree. Am. J. Plant Sci., 4, 2070–2082. http://dx.doi.org/10.4236/ajps.2013.411259
  76. Zhu, Z.H., Chao, C.J., Lu, X.Y., Xiong, Y.G. (1986). Paulownia in China: cultivation and utilization. Chinese Academy of Forestry Staff. Asian Network for Biological Sciences and International Development Research Centre, Beijing, China, 1–65.
  77. Złotek, U., Mikulska, S., Nagajek, M., Świeca, M. (2016). The effect of different solvents and the number of ex¬traction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J. Biol. Sci., 23, 628–633. https://doi.org/10.1016/j.sjbs.2015.08.002
  78. Zuazo, V.H.D., Bocanegra, J.A.J., Torres, F.P., Pleguezuelo, C.R.R., Martínez, J.R.F. (2013). Biomass yield po¬tential of paulownia trees in a semi-arid Mediterranean environment (S Spain). Int. J. Renew. Energy Res., 3(4), 789–793. https://doi.org/10.20508/ijrer.v3i4.844.g6206
  79. Żbik, K., Onopiuk, A., Szpicer, A., Kurek, M. (2023). Comparison of the effects of extraction method and solvents on biological activities of phytochemicals from selected violet and blue pigmented flowers. J. Food Meas. Charact., 17, 6600–6608. https://doi.org/10.1007/s11694-023-02158-2

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.