Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 4 (2025)

Articles

Effects of bacterial inoculants and irrigation regimes on yield, mycorrhizal colonisation, and photosynthetic efficiency in strawberry cultivars

DOI: https://doi.org/10.24326/asphc.2025.5492
Submitted: 28 January 2025
Published: 29.08.2025

Abstract

Strawberries (Fragaria × ananassa) are a globally significant fruit crop with high nutritional and economic value. However, their shallow roots and high water demands make them vulnerable to water stress. The effects of microbial inoculants and irrigation regimes on the yield, root colonisation by arbuscular mycorrhizal fungi (AMF), and photosynthetic efficiency of strawberry cultivars Rumba and Honeoye were investigated. Field and pot experiments were conducted, where plants were subjected to 100% and 50% water supply conditions. The application of Inoculum 1 (C09EX – Pseudomonas sp., Ps150AB Pseudomonas sp.) and Inoculum 2 (JAFGU – Lysobacter sp.) were applied to evaluate their potential to enhance plant growth and resilience under these conditions.
A full irrigation regime (100% water supply) significantly increased fruit yield per plant in both cultivars compared to a reduced irrigation regime (50% water supply). Both inoculants positively affected yield, with Inoculum 1 showing the best results under full irrigation and Inoculum 2 under reduced irrigation. Mycorrhizal colonisation of roots was significantly improved by both inoculants, with the highest colonisation levels observed in plants treated with Inoculum 2. Photosynthetic efficiency parameters, such as the maximum quantum yield of PSII (FV/FM) and quantum efficiency of photochemical reaction in PSII (ΦPSII), declined under reduced irrigation, particularly in Honeoye, but microbial inocula mitigated these effects and enhanced performance under both regimes.
These findings suggest that microbial inoculants can alleviate the adverse effects of water stress on strawberry plants, enhancing yield and physiological performance. Future research should explore the underlying mechanisms of these interactions and evaluate the long-term benefits of microbial inocula in different environmental conditions.

References

  1. Azam M., Ejaz S., Naveed Ur Rehman R., Khan M., Qadri R. (2019). Postharvest Quality Management of Strawberries. In: Asao T, Asaduzzaman M (eds), Strawberry. Pre-and post-harvest management techniques for higher fruit quality. IntechOpen. https://dx.doi.org/10.5772/intechopen.82341
  2. Borkowska B. (2002). Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol. Plant. 24, 365–370. https://doi.org/10.1007/s11738-002-0031-7
  3. Borowicz V.A. (2010). The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia 53(4), 265–270. https://doi.org/10.1016/j.pedobi.2010.01.001
  4. Cecatto A.P., Ruiz F.M., Calvete E.O., Martínez J., Palencia P. (2016). Mycorrhizal inoculation affects the phytochemical content in strawberry fruits. Acta Sci. Agron. 38, 227–237. https://doi.org/10.4025/actasciagron.v38i2.27932
  5. Chen S., Zhao H., Zou C., Li Y., Chen Y., Wang Z., Jiang Y., Liu A., Zhao P., Wang M., Ahammed G.J. (2017). Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front. Microbiol. 8, 2516. https://doi.org/10.3389/fmicb.2017.02516
  6. Chiomento J.L.T., da Costa R.C., de Nardi F.S., Trentin N. dos S., Nienow A.A., Calvete E.O. (2019). Arbuscular mycorrhizal fungi communities improve the phytochemical quality of strawberry. J. Hortic. Sci. Biotechnol. 94(5), 653–663. https://doi.org/10.1080/14620316.2019.1599699
  7. Chiomento J.L.T., Fracaro J., Görgen M., Fante R., Dal Pizzol E., Welter M., Klein A.P., Trentin T.S., Suzana-Milan C.S., Palencia P. (2024) Arbuscular Mycorrhizal Fungi, Ascophyllum nodosum, Trichoderma harzianum, and their combinations influence the phyllochron, phenology, and fruit quality of strawberry plants. Agronomy 14:860. doi:10.3390/agronomy14040860
  8. Chiomento J.L.T., de Paula J.E.C., de Nardi F.S., Trentin T. dos S., Magro F.B., Dornelles A.G., Anzolin J., Fornari M., Trentin N. dos S., Rizzo L.H., Calvete E.O. (2021). Arbuscular mycorrhizal fungi influence the horticultural performance of strawberry cultivars. Res. Soc. Dev. 10(7), e45410716972. https://doi.org/10.33448/rsd-v10i7.16972
  9. Derkowska E., Sas-Paszt L., Dyki B., Sumorok B. (2015). Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Advances in Microbiology. 5, 54–64. http://creativecommons.org/licenses/by/4.0/
  10. El-Beltagi H.S., Ismail S.A., Ibrahim N.M., Shehata W.F., Alkhateeb A.A., Ghazzawy H.S., El-Mogy M.M., Sayed E.G. (2022). Unravelling the effect of triacontanol in combating drought stress by improving growth, productivity, and physiological performance in strawberry plants. Plants 11, 1913. https://doi.org/10.3390/plants11151913
  11. FAO 2023. Food and Agriculture Organization of the United Nations. Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL.
  12. Haghshenas M., van Delden S.H., Nazarideljou M.J. (2024). Effects of nutrient solution strength, PGPB, and mycorrhizal inoculation on growth, yield, and quality of strawberry. Turk. J. Agr. For. 48(3), 390–401. https://doi.org/10.55730/1300-011X.3189
  13. Hernández-Sebastià C., Samson G., Bernier P-Y., Piché Y., Desjardins Y. (2000). Glomus intraradices causes differential changes in amino acid and starch concentrations of in vitro strawberry subjected to water stress. New Phytol. 148(1), 177–186. https://doi.org/10.1046/j.1469-8137.2000.00744.x
  14. Hernández-Sebastià C., Piché Y., Desjardins Y. (1999). Wa¬ter relations of whole strawberry plantlets in vitro inoculated with Glomus intraradices in a tripartite culture system. Plant Sci. 143(1), 81–91. https://doi.org/10.1016/S0168-9452(99)00014-X
  15. Jamiołkowska A., Skwaryło-Bednarz B., Patkowska E., Buczkowska H., Gałązka A., Grządziel J., Kopacki M. (2020). Effect of Mycorrhizal Inoculation and Irrigation on Biological Properties of Sweet Pepper Rhizosphere in Organic Field Cultivation. Agronomy 10(11), 1693. https://doi.org/10.3390/agronomy10111693
  16. Khan M.N. (2023). Melatonin regulates mitochondrial enzymes and ascorbate–glutathione system during plant responses to drought stress through involving endogenous calcium. S. Afr. J. Bot. 162, 622–632. https://doi.org/10.1016/j.sajb.2023.09.032
  17. Lane D.J. (1991). 16S/23S rRNA sequencing, pp. 115–175. In: Stackebrandt E. and M. Goodfellow (eds). Nucleic acid techniques in bacterial systermatics. John Wiley & Sons Ltd, Chichester, United Kingdom.
  18. Mazurek-Kusiak A., Sawicki B., Kobyłka A. (2021). Contemporary challenges to the organic farming: a Polish and Hungarian case study. Sustainability 13(14), 8005. https://doi.org/10.3390/su13148005
  19. Mei C., Amaradasa B.S., Chretien R.L., Liu D., Snead G., Samtani J.B., Lowman S. (2021). A potential application of endophytic bacteria in strawberry production. Horticulturae 7(11), 504. https://doi.org/10.3390/horticulturae7110504
  20. Moradtalab N., Hajiboland R., Aliasgharzad N., Hartmann T.E., Neumann. G. (2019). Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9(1), 41. https://doi.org/10.3390/agronomy9010041
  21. Morais M.C., Mucha Â., Ferreira H., Gonçalves B., Bacelar E., Marques G. (2019). Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. J. Sci. Food Agric. 99(12), 5341–5349. https://doi.org/10.1002/jsfa.9773
  22. Oregel-Zamudio E., Angoa-Pérez M.V., Oyoque-Salcedo G., Aguilar-González C.N., Mena-Violante H.G. (2017). Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Sci. Hort. 214, 273–279. https://doi.org/10.1016/j.scienta.2016.11.038
  23. Paliwoda D., Mikiciuk G., Mikiciuk M., Kisiel A., Sas-Paszt L., Miller T. (2022). Effects of rhizosphere bacteria on strawberry plants (Fragaria × ananassa duch.) under water deficit. Int. J. Mol. Sci. 23(18), 10449. https://doi.org/10.3390/ijms231810449
  24. Pérez-Moncada U.A., Santander C., Ruiz A., Vidal C., Santos C., Cornejo P. (2024). Design of microbial consortia based on arbuscular mycorrhizal fungi, yeasts, and bacteria to improve the biochemical, nutritional, and physiological status of strawberry plants growing under water deficits. Plants 13(11), 1556. https://doi.org/10.3390/plants13111556
  25. Raturi P., Rai R., Sharma A.K., Singh A.K., Dimri D.C., Bains G. (2023). Effects of plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on morpho-physiological parameters of strawberry cv. Chandler under different moisture levels. Int. J. Environ. Clim. Change. 13(9), 2707–2713. https://doi.org/10.9734/ijecc/2023/v13i92502
  26. Redondo-Gómez S., García-López J.V., Mesa-Marín J., Pajuelo E., Rodriguez-Llorente I.D., Mateos-Naranjo E. (2022). Synergistic effect of plant-growth-promoting rhizobacteria improves strawberry growth and flowering with soil salinization and increased atmospheric CO2 levels and temperature conditions. Agronomy 12(9), 2082. https://doi.org/10.3390/agronomy12092082
  27. Sahana B.J., Madaiah D., Sridhara S., Pradeep S., Nithin K.M. (2020). Study on effect of organic manures on quality and biochemical traits of strawberry (Fragaria× ananassa Duch.) under naturally ventilated polyhouse. Int. J. Curr. Microbiol. Appl. Sci. 9 (10), 2692–2698. https://doi.org/10.20546/ijcmas.2020.910.325
  28. Shahrajabian M.H., Petropoulos S.A., Sun W. (2023). Survey of the Influences of Microbial Biostimulants on Horticultural Crops: Case Studies and Successful Paradigms. Hortic. 9(2), 193. https://doi.org/10.3390/horticulturae9020193
  29. Sharma K., Mirza A.A., Aarti. (2023). Micronutrient and Metabolic Profiling of Strawberry Cultivars Grown in Subtropical Conditions: A Review. Agric. Rev. 46(3), 437–443. https://doi.org/10.18805/ag.R-2642
  30. Silva A.M.M., Feiler H.P., Qi X., Araújo V.L.V.P. de, Lacerda-Júnior G.V., Fernandes-Júnior P.I., Cardoso E.J.B.N. (2023). Impact of water shortage on soil and plant attributes in the presence of arbuscular mycorrhizal fungi from a harsh environment. Microorganisms 11(5), 1144. https://doi.org/10.3390/microorganisms11051144
  31. Song W., Song R., Zhao Y., Zhao Y. (2023). Research on the characteristics of drought stress state based on plant stem water content. Sustain. Energy Technol. Assess. 56, 103080. https://doi.org/10.1016/j.seta.2023.103080
  32. TIBCO Software Inc. (2017). Statistica (data analysis software system), version 13. http://statistica.io.
  33. Todeschini V., AitLahmidi N., Mazzucco E., Marsano F., Gosetti F., Robotti E., Bona E., Massa N., Bonneau L., Marengo E., Wipf D., Berta G., Lingua G. (2018). Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. Front. Plant Sci. 9, 1611. https://doi.org/10.3389/fpls.2018.01611
  34. Trouvelot A., Kough J.L., Gianinazzi-Pearson V. (1986). Mesure du taux de mycorhization VA d’un systeme radi-culaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V. and Gianinazzi, S., Eds, Physiological and Genetical Aspects of Mycorrhizae, INRA, Paris, 217–221.
  35. Trzciński P., Frąc M., Lisek A., Przybył M., Frąc M., Sas-Paszt L. (2021). Growth promotion of raspberry and strawberry plants by bacterial inoculants. Acta Sci. Pol. Hortorum Cultus. 20(6), 71–82. https://doi.org/10.24326/asphc.2021.6.8
  36. Valle-Romero P., García-López J.V., Redondo-Gómez S., Flores-Duarte N.J., Rodríguez-Llorente I.D., Idaszkin Y.L., Pajuelo E., Mateos-Naranjo E. (2023). Biofertilization with PGP bacteria improve strawberry plant performance under sub-optimum phosphorus fertilization. Agronomy 13(2), 335. https://doi.org/10.3390/agronomy13020335
  37. Wang Q., Chu C., Zhao Z., Wu S., Zhou D. (2024). Pseudomonas fluorescens enriched by Bacillus velezensis containing agricultural waste promotes strawberry growth by microbial interaction in plant rhizosphere. Land Degrad. Dev. 35(7), 2476–2488. https://doi.org/10.1002/ldr.5074
  38. Yokoyama G., Ono S., Yasutake D., Hidaka K., Hirota T. (2023). Diurnal changes in the stomatal, mesophyll, and biochemical limitations of photosynthesis in well-wa¬tered greenhouse-grown strawberries. Photosynthetica 61(1), 1–12. https://doi.org/10.32615/ps.2023.001
  39. Zahedi S.M., Hosseini M.S., Fahadi Hoveizeh N., Kadkhodaei S., Vaculík M. (2023). Physiological and biochemical responses of commercial strawberry cultivars under optimal and drought stress conditions. Plants 12(3), 496. https://doi.org/10.3390/plants12030496
  40. Zhu X.C., Song F.B., Xu H.W. (2010). Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil. 331, 129–137. https://doi.org/10.1007/s11104-009-0239-z

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.