Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Organic foliar fertilisers containing calcium, phosphorus, and plant extracts for the potential control of some insect pests of Brassica oleracea var. capitata L.

DOI: https://doi.org/10.24326/asphc.2025.5498
Submitted: 15 February 2025
Published: 03.10.2025

Abstract

The cabbage whitefly (Aleyrodes proletella L.; Hemiptera: Aleyrodidae), the diamondback moth (Plutella xylostella L.; Lepidoptera: Noctuidae), and the cabbage aphid (Brevicoryne brassicae L.; Hemiptera: Aphididae) are responsible for the most significant losses in cabbage (Brassica oleracea var. capitata L.) cultivation. In this study, two commercial foliar fertilisers, Mitemine® (a calcium fertiliser) and D-Fense (a phosphorus and potassium fertiliser), and the insecticide Movento 100 SC (spirotetramat) were used to control these pests. In 2020, all treatments applied 6 times reduced pest infestations by approximately 60%–80% compared with the untreated controls. In 2021, a decrease in the number of treatments to 4 resulted in a 10%–20% reduction in effectiveness. Light and scanning electron microscopy revealed variations in the number and density of stomata, cuticle thickness, and leaf structure between the control and treatment groups. Anatomical evaluation suggested that the thickening of the cuticle and epidermis on the abaxial side of the leaves, including the vascular bundles – likely due to the calcium in Mitemine® – may be one of the mechanisms responsible for the observed decrease in the pest population density. The combination of D-Fense and Mitemine® did not significantly alter the effectiveness of Mitemine® against herbivores; however, this combination resulted in a more compact structure of the mesophyll, thicker abaxial epidermis inner cell walls, and a thick layer of cuticle on stomata surface. The findings indicate that foliar fertilisers containing calcium can enhance plant resistance to pests, offering a potential alternative to chemical pesticides in sustainable crop protection strategies.

References

  1. Abd El-Ghany, N.M. (2019). Semiochemicals for controlling insect pests. J. Plant Prot. Res., 59(1), 1–11. https://doi.org/10.24425/jppr.2019.126036
  2. Amtmann, A., Troufflard, S., Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant., 133(4), 682–691.
  3. Arora, R., Sandhu, S. (2017). Breeding insect resistant crops for sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-6056-4
  4. AtlasBig (2018–2025). Countries by cabbage production. AtlasBig. Available: https://www.atlasbig.com/en-gb/countries-by-cabbage-production [date of access: 16.09.2025].
  5. Aynalem, B., Muleta, D., Jida, M., Shemekite, F., Aseffa, F. (2022). Biocontrol competence of Beauveria bassiana, Metarhizium anisopliae and Bacillus thuringiensis against tomato leaf miner, Tuta absoluta Meyrick 1917 under greenhouse and field conditions. Heliyon, 8(6), e09694. https://doi.org/10.1016/j.heliyon.2022.e09694
  6. Bala, K., Sood, A.K., Pathania, V.S., Thakur, S. (2018). Effect of plant nutrition in insect pest management: a review. J. Pharmacogn. Phytochem., 7(4), 2737–2742.
  7. Bisht, A., Kumar, V., 2023. Integrated management of cabbage aphid (Brevicoryne brassicae L.). Environ. Ecol., 41(3B), 1755–1760. https://doi.org/https://doi.org/10.60151/envec/TZOU4434
  8. Biswas, A.P., Insha, R., Mazed, M., Rahman, M., Hossain, M., (2025). Unraveling the mechanisms of plant structural defenses against insect pests. OnLine J. Biol. Sci., 25(1), 186–199. https://doi.org/10.3844/ojbsci.2025.186.199
  9. Brück, E., Elbert, A., Fischer, R., Krueger, S., Kühnhold, J., Klueken A.M., Nauen, R., Niebes, J.-F., Reckmann, U., Schnorbach H.-J., Steffens, R., Van Waetermeulen, X. (2009). Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot., 28(10), 838–844. https://doi.org/10.1016/j.cropro.2009.06.015
  10. Bütüner, A.K., Ergene, E., İlktan, M., Sepin, S., Susurluk, H., Susurluk, İ.A. (2024). Impact of some entomopathogenic nematode isolates on the mortality and penetration rate of Rhyzopertha dominica and Tenebrio molitor. Crop Prot., 179, 106629.
  11. Chaudhary, R., Nawaz, A., Khattak, Z., Butt, M.A., Fouillaud, M., Dufossé, L., Munir, M., Ul Haq, I., Mukhtar, H. (2024). Microbial bio-control agents: a comprehensive analysis on sustainable pest management in agriculture. J. Agric. Food Res., 18, 101421. https://doi.org/10.1016/j.jafr.2024.101421
  12. Dede, E., Bütüner, A.K., Susurluk, A. (2022). Biocontrol potential of Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) HBH hybrid strain against the beet webworm, Loxostege sticticalis L., 1761 (Lepidoptera: Pyralidae). Turk. J. Entomol., 46(4), 399–405.
  13. Deniau, M.G., Bonafos, R., Chovelon, M., Parvaud, C-E., Furet, A., Bertr, C., March, P.A., (2019). Willow extract (Salix cortex), a basic substance of agronomical interests. Int. J. Bio-res. Stress Manage., 10(1), 408–418. https://doi.org/10.23910/ijbsm/2019.10.4.2009
  14. Denness, L., McKenna, J.F., Segonzac, C., Wormit, A., Priya, M., Bennett, M., Mansfield, J., Zipfel, C., Haman, T. (2011). Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species – and jasmonic acid-dependent process in Arabidopsis. Plant Physiol., 156, 1364–1374. https://doi.org/10.1104/pp.111.175737
  15. Dyki, B., Habdas, H. (1996). Metoda izolowania epidermy liści pomidora i ogórka dla mikroskopowej oceny rozwoju grzybów patogenicznych. The method of isolation of epidermis of tomato and cucumber leaves for microscopic investigation of pathogenic fungus development. Acta Agrobot., 49, 123–129.
  16. Eichert, T., Fernández, V. (2023). Uptake and release of elements by leaves and other aerial plant parts. In: Z., Rengel, I., Cakmak, P.J., White (eds.), Marschner’s mineral nutrition of plants. Academic Press, pp. 105–129. https://doi.org/10.1016/B978-0-12-819773- 8.00014-9
  17. Feng, J.L., Zhang, J., Yang, J., Zou, LP., Fang, T.T., Xu, H.L., Cai, Q.N. (2021). Exogenous salicylic acid improves resistance of aphid-susceptible wheat to the grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Bull. Entomol. Res., 111(5), 544–552. https://doi.org/10.1017/S0007485321000237
  18. Frew, A., Weston, L.A., Gurr, G.M. (2019). Silicon reduces herbivore performance via different mechanisms, depending on host–plant species. Austral. Ecol., 44(6), 1092–1097. https://doi.org/10.1111/aec.12767
  19. Fernández, V., Eichert, T., Del Río, V., López-Casado, G., Heredia-Guerrero, J.A., Abadía, Heredia, A.A., Abadía, J., (2008). Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: physiological implications. Plant Soil, 311, 161–172. https://doi.org/10.1007/s11104-008-9667-4
  20. Fu, J., Shi, Y., Wang, L., Tian, T., Li, J., Gong, L., Zheng, Z., Jing, M., Fang, J., Ji, R. (2022). Planthopper-secreted salivary calmodulin acts as an effector for defense responses in rice. Front. Plant Sci., 13, 841378. https://doi.org/10.3389/fpls.2022.841378
  21. Gautam, M.P., Singh, H., Kumar, S., Kumar, V., Gajendra Singh, G., Singh, S.N. (2018). Diamondback moth, Plutella xylostella (Linnaeus) (Insecta: Lepidoptera: Plutellidae) a major insect of cabbage in India: a review. J. Entomol. Zool. Stud., 6(4), 1394–1399.
  22. Gomes, F.B., de Moraes, J.C., dos Santos, C.D., Goussain, M.M. (2005). Resistance induction in wheat plants by silicon and aphids. Sci. Agric., 62, 547–551.
  23. Görlach, B.M., Mühling, K.H. (2021). Phosphate foliar application increases biomass and P concentration in P deficient maize. J. Plant Nutr. Soil Sci., 184, 360–370. https://doi.org/10.1002/jpln.202000460
  24. Ho, S.H., Ma, Y. (1995). Repellence of someplant extracts to the stored product beetles, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Paper Presentedat the Symposium on Pest Management for Stored Food and Feed. SEMEO BIOTROP, Bogor, Indonesia, 5–7 September.
  25. Hol, K., Kovaříková, K. (2024). Spring abundance, migration patterns and damaging period of Aleyrodes proletella in the Czech Republic. Agronomy, 14(7), 1477. https://doi.org/10.3390/agronomy14071477
  26. Homayoonzadeh, M., Haghighi, S.R., Hosseininaveh, V., Talebi, K., Roessner, U., Winters, A. (2022). Effect of spirotetramat application on salicylic acid, antioxidative enzymes, amino acids, mineral elements, and soluble carbohydrates in cucumber (Cucumis sativus L.). Biol. Life Sci. Forum, 11(1), 3. https://doi.org/10.3390/IECPS2021-11921
  27. Hultgren, A., Carleton, T., Delgado, M., Gergel, D.R., Greenstone, M., Houser, T., Hsiang, S., Jina, A., Kopp, R.E., Malevich, S.B., McCusker, K.E., Mayer, T., Nath, I., Rising, J., Rode, A., Yuan, J. (2025). Impacts of climate change on global agriculture accounting for adaptation. Nature, 642, 644–652. https://doi.org/10.1038/s41586-025-09085-w
  28. Ludwig, M., Ludwig, H., Conrad, C., Dahms, T., Meyhöfer, R. (2019). Cabbage whiteflies colonize brassica vegetables primarily from distant, upwind source habitats. Entomol. Ex. App., 167, 713–721. https://doi.org/10.1111/eea.12827
  29. Koca, A.S., Kütük, H. (2020). Population dynamics of Aleyrodes proletella L. (Hemiptera: Aleyrodidae) and its parasitoids in Düzce Province of Turkey. J. Plant Dis. Prot., 127, 607–614. https://doi.org/10.1007/s41348-020-00319-9
  30. Kvedaras, O.L., Keeping, M.G., Goebel, F.R., Byrne, M.J. (2007). Larval performance of the pyralid borer Eldana saccharina Walker and stalk damage in sugarcane. Influence of plant silicon, cultivar and feeding site. Int. J. Pest. Manag., 53, 183–194.
  31. Łabanowski, G. (2015). Mączlik warzywny – Aleyrodes proletella (l. 1758) – szkodnik warzyw kapustnych w Polsce [Cabbage whitefly – Aleyrodes proletella (l. 1758) – pest of brassica vegetables in Poland]. Zesz. Nauk. Inst. Ogrod., 23, 49–61.
  32. Larsson, M.C. (2016). Pheromones and other semiochemicals for monitoring rare and endangered species. J. Chem. Ecol., 42, 853–868. https://doi.org/10.1007/s10886-016-0753-4
  33. Mandal, S., Mallick, N., Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol. Biochem., 47, 642–649.
  34. Marasek-Ciolakowska, A., Saniewski, M., Dziurka, M., Kowalska, U., Góraj-Koniarska, J., Ueda, J., Miyamota, K. (2020). Formation of the secondary abscission zone Induced by the interaction of methyl jasmonate and auxin in Bryophyllum calycinum: relevance to auxin status and histology. Int. J. Mol. Sci., 21, 2784. https://doi.org/10.3390/ijms21082784
  35. Marasek-Ciolakowska, A., Soika, G., Warabieda, W., Kowalska, U., Rybczyński, D. (2021). Investigation on the relationship between morphological and anatomical characteristic of savoy cabbage and kale leaves and infestation by cabbage whitefly (Aleyrodes proletella L.). Agronomy, 11, 275. https://doi.org/10.3390/agronomy11020275
  36. Marschner, H. (2012) Marschner’s mineral nutrition of higher plants. Vol. 89. Academic Press, London, 651.
  37. Massey, F.P., Hartley, S.E. (2009). Physical defences wear you down. Progressive and irreversible impacts of silica on insect herbivores. J. Anim. Ecol., 78, 281–291.
  38. Müller, V., Maiwald, F., Lange, G., Nauen, R. (2024). Mapping and characterization of target-site resistance to cyclic ketoenol insecticides in cabbage whiteflies, Aleyrodes proletella (Hemiptera: Aleyrodidae). Insects, 15, 178. https://doi.org/10.3390/insects15030178
  39. Nile, A.S., Kwon, Y.D., Nile, S.H. (2019). Horticultural oils: possible alternatives to chemical pesticides and insecticides. Environ. Sci. Pollut. Res. Int., 26(21), 21127–21139. https://doi.org/10.1007/s11356-019-05509-z
  40. Negbenebor, H.E., Abdullahi, R.I., Nura, S., Sharif, U. (2020). Insecticidal activity of sesame leaf and stem extracts on Clavigralla tomentosicollis Stal (Hemiptera: Coreidae). Bayero J. Pure Appl. Sci., 13(1), 145–151.
  41. Negbenebor, H.E., Mohammed, A.A., Nura S. (2022). Insecticidal and anti-infestation efficacy of Sesamum indicum L. leaf powder against Callosobruchus maculatus. Niger. J. Health Sci., 12(1), 14–18.
  42. Pal, M., Singh, R. (2013). Biology and ecology of the cabbage aphid, Brevicoryne brassicae (Linn.) (Homoptera: Aphididae): a review. J. Aphidol., 27, 59–78.
  43. Pathan, A.K., Bond, J., Gaskin, R.E. (2008). Sample preparation for scanning electron microscopy of plant surfaces – horses for courses. Micron, 39, 1049–1061.
  44. Parmagnani, A.S., Maffei, M. (2022). Calcium signaling in plant-insect interactions. Plants, 11(20), 2689. https://doi.org/10.3390/plants11202689
  45. Rahman, A., Wallis, C.M., Uddin, W. (2015). Silicon-induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology, 105, 748–757.
  46. Ramanujam, B., Japur, K., Poornesha, B. (2018). Field evaluation of entomopathogenic fungi against cabbage aphid, Brevicoryne brassicae (L.) and their effect on coccinellid predator Coccinella septempunctata (Linneaus). J. Biol. Control, 31(3), 168–171. https://doi.org/10.18311/jbc/2017/16350
  47. Ramniwas, S., Bilal, T., Sharma, A. (2024). Repellent activity of Salix alba bark extract and guava oil-based formulation against the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Int. J. Trop. Insect Sci., 44, 831–842. https://doi.org/10.1007/s42690-024-01199-4
  48. Ruppel, R.F. (1983). Cumulative insect-days as an index of crop protection. J. Econ. Entomol., 76(1), 375–377. https://doi.org/10.1093/jee/76.2.375
  49. Šamec, D., Pavlović, I., Salopek-Sondi, B. (2017). White cabbage (Brassica oleracea var. capitata f. alba) botanical, phytochemical and pharmacological overview. Phytochem. Rev., 16, 117–135. https://doi.org/10.1007/s11101-016-9454-4
  50. Sandhu, S., Manjit, S., Kang, R. (2017). Advances in Breeding for resistance to insects. In: R. Arora, S. Sandhu (eds.), Breeding insect resistant crops for sustainable. Agriculture, 67–99 Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-6056-4_3
  51. Sardans, J., Peñuelas, J. (2021). Potassium control of plant functions: ecological and agricultural implications. Plants (Basel), 10(2), 419. https://doi.org/10.3390/plants10020419
  52. Sarvar, M., Shad, N.A. (2021). Management of insect pests through hormones. In: L.P., Avasthi (ed.), Biopesticides in organic farming. CRC Press, Boca Raton, 191–196. https://doi.org/10.1201/9781003027690-44
  53. Seki, K. (2016). Leaf-morphology-assisted selection for resistance to two-spotted spider mite Tetranychus uriticae Koch (Acari: Tetranychidae) in carnations (Dianthus caryophyllus L). Pest Manag. Sci., 72, 1926–1933.
  54. Shang, H., He, D., Li, B., Chen, X., Luo, K., Li, G. (2024). Environmentally friendly and effective alternative approaches to pest management: recent advances and challenges. Agronomy, 14, 1807. https://doi.org/10.3390/agronomy14081807
  55. Singh, A., Gurusamy, D., Singh, I.K. (2024) Editorial. Calcium signaling: an early plant defense response againstpests and pathogens. Front. Plant Sci., 15, 1400006. https://doi.org/10.3389/fpls.2024.1400006
  56. Strömberg, C.A.E., Di Stilio, V.S., Song, Z. (2016). Functions of phytoliths in vascular plants: an evolutionary perspective. Funct. Ecol., 30, 1286–1297.
  57. Susurluk, H., Bütüner, A.K. (2024). Effects of a native diatomaceous earth on Oryzaephilus surinamensis (L., 1758) (Coleoptera: Silvanidae), and Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae). Harran J. Agri. Food Sci., 28(1), 49–59.
  58. Sarfraz, R., Priyadarshani, S.V.G.N., Fakhar, A., Khan, M.I., Hassan, Z.U., Kim, P.J., Kim, G.W. (2024). Unlocking plant defense: exploring the nexus of biochar and Ca2+ signaling. Plant Stress, 14, 100584. https://doi.org/10.1016/j.stress.2024.100584
  59. Thor, K. (2019). Calcium – nutrient and messenger. Front. Plant Sci., 10(440). https://doi.org/10.3389/fpls.2019.00440
  60. Tomić, D., Stevović, V., Simić, A., Đurović, D., Radovanović, M., Madić, M., Knežević, J. (2020). Foliar fertilization with phosphorus and potassium in red clover seed production on an acidic soil. Acta Agric. Serb., 25(49), 51‒57. https://doi.org/10.5937/AASer2049051T
  61. Vélez-Bermúdez, I.-C., Salazar-Henao, J.E., Fornalé, S., López-Vidriero, I., Franco-Zorrilla, J.-M., Grotewold, E., Gray, J., Solano, R., Schmidt, W., Pagés, M., Riera, M., Caparros-Ruiz, D. (2015). A MYB/ZML complex regulates wound-induced lignin genes in maize. Plant Cell, 27(11), 3245–3259. https://doi.org/10.1105/tpc.15.00545
  62. Wainwright, C., Jenkins, S., Wilson, D., Elliott, M., Jukes, A., Collier, R. (2020). Phenology of the diamondback moth (Plutella xylostella) in the UK and provision of decision support for Brassica growers. Insects, 11(2), 118. https://doi.org/10.3390/insects11020118
  63. Wdowiak, A., Podgórska, A., Szal, B. (2024). Calcium in plants: an important element of cell physiology and structure, signaling, and stress responses. Acta Physiol. Plant, 46, 108. https://doi.org/10.1007/s11738-024-03733-w
  64. Will, T., Furch, A.C.U., Zimmermann, M.R. (2013). How phloem-feeding insects face the challenge of phloem-located defenses. Front. Plant Sci., 4, Article 336. https://doi.org/10.3389/fpls.2013.00336
  65. Yang, F.L., Zhu, F., Lei, C.-L. (2012). Insecticidal activities of garlic substances against adults of grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae). Insect Sci., 19, 205–212. https://doi.org/10.1111/j.1744-7917.2011.01446.x
  66. Yaraşır, O.N., Ergene, E., Bütüner, A.K., Susurluk, H., Susurluk, A. (2024). Pathogenicity of the Steinernema feltiae TUR-S3 (Rhabditida: Steinernematidae) isolate on Oryzaephilus surinamensis (Coleoptera: Silvanidae) and Tribolium confusum (Coleoptera: Tenebrionidae). Turk. J. Agric. Nat. Sci., 11(2), 409–416.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.