Abstract
Salt stress is the main problem facing evergreen plants in cities. To a large extent, these plants have stunted growth, lose their ornamental qualities and finally die. The aim of this study was to investigate the response of a selected three ornamental evergreen plants: Pachysandra terminalis, Buxus sempervirens and Hedera helix, to the effects of three different concentrations of sodium chloride (NaCl) – 100, 200 and 300 mM. As a result of a number of experiments, it was found that increased NaCl concentrations resulted in inhibition of plant growth – even more than 90% shorter growth, as in the case of ivy. In addition, the analyses made it possible to conclude that NaCl influences biochemical changes in plant tissues, in particular chlorophyll, soluble proteins or stress parameters such as MDA or free proline. The results obtained allow the validity of the use of selected species in urban greenery in temperate climates to be established.
References
- Bekmirzaev, G., Ouddane, B., Beltrão, J., Fujii, Y. (2020). The impact of salt concentration on the mineral nutrition of Tetragonia tetragonioides. Agriculture, 10(6), 238. https://doi.org/10.3390/agriculture10060238
- Berwal, M.K., Kumar, R., Prakash, K., Rai, G.K., Hebbar, K.B. (2021). Abiotic stress tolerance mechanisms in plants. 1st ed. CRC Press, Boca Raton, FL, USA, 175–202.
- Biczak, R., Pawłowska, B., Feder-Kubis, J. (2016). [Growth inhibition and oxidative stress in plants under the influence of chiral imidazolium ionic liquid with tetrafluoroborate anion]. Chem. Environ. Biotechnol., 19, 35–45 [in Polish].
- Boorboori, M.R., Li, J. (2025). The effect of salinity stress on tomato defense mechanisms and exogenous application of salicylic acid, abscisic acid, and melatonin to reduce salinity stress. Soil Sci. Plant Nutr., 71(1), 93–110. https://doi.org/10.1080/00380768.2024.2405834
- Bradford, M.M. (1976). A rapid and sensitive metod for the quantification of microgram quantities of protein utilizng the principle of protein dye binding. Anal. Biochem., 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Cai, Z.Q., Gao, Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biol., 20(1), 1–15. https://doi.org/10.1186/s12870-020-2279-8
- Cerrato, M.D., Mir-Rosselló, P.M., Cortés-Fernández, I., Ribas-Serra, A., Douthe, C., Cardona, C., Sureda A., Flexas J., Gil Vives, L. (2024). Insights on physiological, antioxidant and flowering response to salinity stress of two candidate ornamental species: the native coastal geophytes Pancratium maritimum L. and Eryngium maritimum L. Physiol. Mol. Biol. Plants, 30(9), 1533–1549. https://doi.org/10.1007/s12298-024-01502-0
- Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M., De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. J. Hortic. Sci. Biotechnol., 91, 14–22. https://doi.org/10.1080/14620316.2015.1110988
- Corwin, D.L., Yemoto, K, 2020. Salinity. Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J., 84(5), 1442–1461. https://doi.org/10.1002/saj2.20154
- De Jong, S., Addink, E., Hoogenboom, P., Nijland, W. (2012). The spectral response of Buxus sempervirens to different types of environmental stress. A laboratory experiment. ISPRS J. Photogramm. Remote Sens., 74, 56–65. https://doi.org/10.1016/j.isprsjprs.2012.08.005
- Devecchi, M., Remotti, D. (2004). Effect of salts on ornamental ground covers for green urban areas. Acta Hortic., 643, 153–156. https://doi.org/10.17660/ActaHortic.2004.643.18
- Dustnazarova, S., Khasanov, A., Khafizova, Z., Davronov, K. (2021). The threat of saline lands, for example, in the Republic of Uzbekistan. E3S Web of Conf. 284, 02002.
- El-Zaiat, R.A., El-Sayed, I.M., Taha, L.S., Abrahim, E.A. (2020). Enzyme activity of micropropagated Antigonon leptopus plant under effect of salinity stress. Plant Arch., 20, 3599–3605.
- FAO (2023). GSASmap. Global Soil Partnership. Food and Agriculture Organization of the United Nations. Available: https://ww.fao.org/global-soil-partnership/gsasmap/en [date of access: 26.05.2025].
- FAO (2024). FAO launches first major global assessment of salt-affected soils in 50 years. Food and Agriculture Organization of the United Nations. Available: https://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/en [date of access: 26.05.2025].
- Goharrizi, K.J., Baghizadeh, A., Kalantar, M., Fatehi, F. (2020a). Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Sci. Hortic., 261, 108970. https://doi.org/10.1016/j.scienta.2019.108970
- Goharrizi, K.J., Riahi-Madvar, A., Rezaee, F., Pakzad, R., Bonyad, F.J., Ahsaei, M.G. (2020b). Effect of salinity stress on enzymes’ activity, ions concentration, oxidative stress parameters, biochemical traits, content of sulforaphane, and CYP79F1 gene expression level in Lepidium draba plant. J. Plant Growth Regul., 39, 1075–1094. https://doi.org/10.1007/s00344-019-10047-6
- Goth, L. (1991). A simple method for determination of serum catalase activity and revision range. Clin. Chim. Acta., 196, 143–151.
- Gupta, B., Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genom., 2014, 701596. https://doi.org/10.1155/2014/701596
- Hakim, M.A., Juraimi, A.S., Hanafi, M.M., Ismail, M.R., Selamat, A., Rafii, M.Y., Latif, M.A. (2014). Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes, Biomed Res. Int., 2014, 208584. https://doi.org/10.1155/2014/208584
- Hamani, A.K.M., Wang, G., Soothar, M.K., Shen, X., Gao, Y. Qiu, R., Mehmood, F. (2020). Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol., 20, 434. https://doi.org/10.1186/s12870-020-02624-9
- Hanin, M., Ebel, C., Ngom, M., Laplaze, L., Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci., 7, 1787. https://doi.org/10.3389/fpls.2016.01787
- Hassanpouraghdam, M.B., Mehrabani, L.V., Tzortzakis, N. (2020). Foliar application of nano-zinc and iron affects physiological attributes of Rosmarinus officinalis and quietens NaCl salinity depression. J. Soil Sci. Plant Nutr., 20, 335–345. https://doi.org/10.1007/s42729-019- 00111-1
- Hnilickova, H., Kraus, K., Vachova, P., Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde ofrmation, and proline content in Portulaca oleracea L. Plants., 10, 845. https://doi.org/10.3390/plants10050845
- Hodges, D.M., Delong, J.M., Forney, C.F, Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta., 207, 604–611. https://doi. org/10.1007/s004250050524
- Hussein, H.A.A., Alshammari, S.O. (2022). Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L.) plants by modulating antioxidant systems. Sci. Rep., 12(1), 11359. https://doi.org/10.1038/s41598-022-14689-7
- Jameel, J., Anwar, T., Majeed, S., Qureshi, H., Siddiqi, E.H., Sana, S., Zaman, W., Ali, H.M. (2024). Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms. BMC Plant Biol., 24(1), 128. https://doi.org/10.1186/s12870-024-04836-9
- Janz, D., Lautner, S., Wildhagen, H., Behnke, K., Schnitzler, J., Rennenberg, H., Fromm, J., Polle, A. (2012). Salt stress induces the formation of a novel type of ‘pressure wood’ in two Populus species. New Phytol., 194(1), 129–141. https://doi.org/10.1111/j.1469-8137.2011.03975.x
- Jha, Y., Subramanian, R.B. (2013). Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil. J. Agr. Res., 73(3), 213–219. https://doi.org/10.4067/s0718-58392013000300002
- Ji, X., Tang, J., Zhang, J. (2022). Effects of salt stress on the morphology, growth and physiological parameters of Juglans microcarpa L. seedlings. Plants., 11, 2381. https://doi.org/10.3390/plants11182381
- Ju, J.H., Choi, E.Y., Yoon, Y.H. (2016). A pilot study to determine the substrate threshold for heavy metal toxicity in groundcover plants used in urban landscapes. Appl. Ecol. Environ. Res., 14, 59–70. http://dx.doi.org/10.15666/aeer/1404_059070
- Khalil, H.A., Hossain, M.S., Rosamah, E., Azli, N.A., Saddon, N., Davoudpoura, Y., Islam, M.N., Dungani, R. (2015). The role of soil properties and it’s interaction towards quality plant fiber. A review. Renew. Sustain. Energy Rev., 43, 1006–1015. https://doi.org/10.1016/j.rser.2014.11.099
- Kibria, M.G., Hoque, M.A. (2019). A review on plant responses to soil salinity and amelioration strategies. Open J. Soil Sci., 9, 219–231. https://doi.org/10.4236/ojss.2019.911013
- Kidwai, M., Ahmad, I.Z., Chakrabarty, D. (2020). Class III peroxidase. An indispensable enzyme for biotic/ abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep., 39, 1381–1393. https://doi.org/10.1007/s00299-020-02588-y
- Kim, Y., Mun, B.G., Khan, A.L., Waqas, M., Kim, H.H., Shahzad, R., Imram, M., Yun, B.W., Lee, I.J. (2018). Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One, 13(3), e0192650. https://doi.org/10.1371/journal.pone.0192650
- Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front. Plant Sci., 12, 660409. https://doi.org/10.3389/fpls.2021.660409
- Li, W., Li, Q. (2017). Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance. Int. J. Environ. Sci. Nat. Res., 7(3), 555714. https://doi.org/10.19080/IJESNR.2017.07.555714
- Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b leaf extracts in different solvents. Biochem. Soc. Trans., 603, 591–592.
- Lu, Y., Zeng, F., Li, X., Zhang, B. (2021). Physiological changes of three woody plants exposed to progressive salt stress. Photosynthetica, 59, 171–184. https://doi.org/10.32615/ps.2021.007
- Marosz, A. (2004). Effect of soil salinity on nutrient uptake, growth, and decorative value of four ground cover shrubs. J. Plant Nutr., 27(6), 977–989. https://doi.org/10.1081/PLN-120037531
- Marosz, A. (2011). Effect of green waste compost and mycorrhizal fungi on calcium, potassium, and sodium uptake of woody plants grown under salt stress. Water Air Soil Pollut., 223, 787–800. https://doi.org/10.1007/s11270-011-0902-x
- Parvaiz, A., Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ., 54(3), 89–99. https://doi.org/10.17221/2774-PSE
- Passioura, J.B. (1991). Soil structure and plant growth. Aust. J. Soil Res., 29(6), 717–728. https://doi.org/10.1071/SR9910717
- Paudel, A., Sun, Y. (2024). Effect of salt stress on the growth, physiology, and mineral nutrients of two penstemon species. HortSci., 59(2), 209–219. https://doi.org/10.21273/HORTSCI17409-23
- Rahneshan, Z., Nasibi, F., Moghadam, A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact., 13, 73– 82. https://doi.org/10.1080/17429145.2018.1424355
- Razzaq, A., Ali, A., Safdar, L.B., Zafar, M.M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. J Food Sci. Jan., 85(1), 14–20. https://doi.org/10.1111/1750-3841.14983
- Roeder, M., Meyer, K. (2022). English Ivy (Hedera helix) is fast, but Ash (Fraxinus excelsior) too. Decomposition of English Ivy litter compared to four common host trees. A multisite citizen sciences project. Acta Oecol., 115, 103832. https://doi.org/10.1016/j.actao.2022.103832
- Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Sarwar, M.I. (2019). A review. Impact of salinity on plant growth. Nat. Sci., 1, 34–40. https://doi.org/10.7537/marsnsj170119.06
- Sedaghathoor, S., Zare, S.K.A. (2019). Interactive effects of salinity and drought stresses on the growth parameters and nitrogen content of three hedge shrubs. Cogent. Environ. Sci., 5(1). https://doi.org/10.1080/23311843.2019.1682106
- Shahid, M., Sarkhosh, A., Khan, N., Balal, R., Ali, S., Rossi, L., Gómez, C., Mattson, N., Jatoi, W., García-Sánchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10, 938. https://doi.org/10.3390/agronomy10070938
- Siedlecka, M. (2010). Skrypt do ćwiczeń z fizjologii roślin [Script for plant physiology exercises]. Uniwersytet Warszawski [Warsaw University], Zakład Molekularnej Fizjologii Roślin [Department of Molecular Plant Physiology], Warszawa, 28–29 [in Polish].
- Simkin, A.J., Kapoor, L., Doss, C.G.P., Hofmann, T.A., Lawson, T., Ramamoorthy, S. (2022). The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth. Res., 152(1), 23–42. https://doi.org/10.1007/s11120-021-00892-6
- Smirnoff, N., Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytol., 221(3), 1197–1214. https://doi.org/10.1111/nph.15488
- Thaker, P., Brahmbhatt, N., Shah, K. (2021). A review: impact of soil salinity on ecological, agricultural and socio-economic concerns. Int. J. Adv. Res., 9, 979–986. http://dx.doi.org/10.21474/IJAR01/13200
- Toczko, M., Grzelińska, A. (2001). Materiały do ćwiczeń z biochemii [Biochemistry exercise materials]. Wydawnictwo SGGW, Warszawa, 99–101 [in Polish].
- Toscano, S., Branca, F., Romano, D., Ferrante A. (2020). An evaluation of different parameters to screen ornamental shrubs for salt spray tolerance. Biology, 9, 250. https://doi.org/10.3390/biology9090250
- Wu, L., Guo, X., Hunter, K., Zagory, E.M., Waters, R., Brown, J. (2001). Studies of salt tolerance of landscape plant species and california native grasses for recycled water irrigation. Slosson Report, 1–14. Available: http://slosson.ucdavis.edu/newsletters/Wu_200129031.pdf [date of access: 8.06.2024].
- Xu, N., Liu, S., Lu, Z., Pang, S., Wang, L., Wang, L., Li, W. (2020). Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants, 9, 1162. https://doi.org/10.3390/plants9091162
- Yan, S., Chong, P., Zhao, M. (2022). Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings, Plant Signal. Behav., 17(1), 2031782. https://doi.org/10.1080/15592324.2022.2031782
- Yilmaz, S., Temizgül, R., Yürürdurmaz, C., Kaplan, M. (2020). Oxidant and antioxidant enzyme response of redbine sweet sorghum under NaCl salinity stress. Bioagro, 32(1), 31–38.
- Yu, X., Her, Y., Chang, A., Song, J.H., Campoverde, E.V., Schaffer, B. (2021). Assessing the effects of irrigation water salinity on two ornamental crops by remote spectral imaging. Agronomy, 11, 375. https://doi.org/10.3390/agronomy11020375
- Zhang, H., Zhu, J., Gong, Z., Zhu, J.K. (2022). Abiotic stress responses in plants. Nat. Rev. Genet., 23(2), 104–119. https://doi.org/10.1038/s41576-021-00413-0
Downloads
Download data is not yet available.
-
Yagmur Yilmaz,
Ceknas Erdinc,
Ahmet Akkopru,
Selma Kipcak,
USE OF PLANT GROWTH PROMOTING RHIZOBACTERIA AGAINST SALT STRESS FOR TOMATO (Solanum lycopersicum L.) SEEDLING GROWTH
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 6 (2020)
-
Barbara Marcinek,
Marzena Parzymies,
Monika Poniewozik,
Danuta Kozak,
Wojciech Durlak,
THE INFLUENCE OF GROWTH REGULATORS ON DAHLIA PROPAGATION IN TISSUE CULTURE AND ACCLIMATIZATION OF PLANTS IN ex vitro CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 5 (2019)
-
Katarzyna Kowalczyk,
Janina Gajc-Wolska,
Dawid Bujalski,
Małgorzata Mirgos,
Monika Niedzińska,
Katarzyna Mazur,
Paweł Żołnierczyk,
Dariusz Szatkowski,
Maciej Cichoń,
Nina Łęczycka,
THE EFFECT OF SUPPLEMENTAL ASSIMILATION LIGHTING WITH HPS AND LED LAMPS ON THE CUCUMBER YIELDING AND FRUIT QUALITY IN AUTUMN CROP
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 4 (2018)
-
Ali Mohammadi Kharkeshi,
Elyas Rahimi Petroudi,
Fazl Shirdel Shahmiri,
Hamidreza Mobasser,
Alireza Daneshmand,
Variations of yield, biochemical and antioxidative responses in sesame with silicon and cytokinin treatments under drought stress
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 6 (2023)
-
Wojciech Durlak,
Barbara Marcinek,
Mariusz Szmagara,
Margot Dudkiewicz,
Aleksandra Konopińska-Mamej,
EFFECT OF SELECTED PREPARATIONS ON SOME BIOMETRIC FEATURES OF ‘TARDIVA’ PANICLED HYDRANGEA (Hydrangea paniculata Siebold) DEPENDING ON THE IRRIGATION FREQUENCY
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Elżbieta Pogroszewska,
Paweł Szot,
Katarzyna Rubinowska,
Aleksandra Konopińska-Mamej,
Alicja Świstowska,
Adam Zdybel,
Marzena Parzymies,
Wojciech Durlak,
THE EFFECT OF SILICON ON MORPHOLOGICAL TRAITS AND MECHANICAL PROPERTIES OF POLYGONATUM MULTIFLORUM (L.) ALL. ‘VARIEGATUM’ CUT SHOOTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 4 (2018)
-
Burcu Seckin Dinler,
Hatice Cetinkaya,
Iskren Sergiev,
Elena Shopova,
Dessislava Todorova,
PACLOBUTRAZOL DEPENDENT SALT TOLERANCE IS RELATED TO CLC1 AND NHX1 GENE EXPRESSION IN SOYBEAN PLANTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 3 (2022)
-
Peiyan Wang,
Lanting Qi,
Junna Song,
Ruojia Zhu,
Xiaowei Han,
Yu Liu,
Xianyun Wang,
Yuguang Zheng,
Zhao Liu,
Functional characterization of ZjPYL8 from sour jujube: enhancing the sensitivity of stomata and roots to ABA in Arabidopsis thaliana
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 6 (2023)
-
Katarzyna Kowalczyk,
Małgorzata Mirgos,
Anna Sobczak-Samburska,
Jarosław Leon Przybył,
Waldemar Kowalczyk,
Anna Geszprych,
Stanisław Kalisz,
Radosław Łaźny,
Marek Gajewski,
Janina Gajc-Wolska,
Effect of growing pink tomato plants with LED supplementary lighting in a greenhouse covered with diffusion glass on post-harvest fruit quality
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 6 (2024)
-
Ozlem Altuntas,
Hayriye Yıldız Dasgan,
Yelderem Akhoundnejad,
Ibrahim Kutalmıs Kutsal,
DOES SILICON INCREASE THE TOLERANCE OF A SENSITIVE PEPPER GENOTYPE TO SALT STRESS?
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 2 (2020)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.