Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Molecular analysis of some diseases and reproduction characteristics in apples from Central Anatolia (Niğde Province)

DOI: https://doi.org/10.24326/asphc.2025.5539
Submitted: 1 May 2025
Published: 24.11.2025

Abstract

Apple scab and fire blight are among the main diseases in apple production. Researchers are conducting studies to tackle these diseases as well as endeavoring to provide apple producers with disease-resistant plant materials. Self-incompatibility in apples engenders problems in pollination and yield. Molecular studies are crucial for revealing the potential of plant materials in this aspect. In this study, 48 genotypes among Niğde Misket Apple were investigated regarding apple scabs and fire blight resistance as well as self-incompatibility with respective markers and genes. Results showed genotypes had resistance alleles of Rvi6 and QTL FB_Mar12, as well as the presence of S26 and S9 alleles of the S gene. These results highlight new hypotheses for further research, particularly regarding disease resistance related to these genes, as well as the relationships among genotypes, cultivars, and species carrying these alleles.

References

  1. Ayer, K.M., Villani, S.M., Choi, M.-W., Cox, K.D. (2019). Characterization of the VisdhC and VisdhD genes in Venturia inaequalis, and sensitivity to fluxapyroxad, pydiflumetofen, inpyrfluxam, and benzovindiflupyr. Plant Dis., 103(6), 1092–1100. https://doi.org/10.1094/PDIS-07-18-1225-RE
  2. Bandara, N.L., Cova, V., Tartarini, S., Gessler, C., Patocchi, A., Cestaro, A., Troggio, M., Velasco, R., Komjanc, M. (2013). Isolation of Rvi5 (Vm) locus from Malus × domestica ‘Murray’. III International Symposium on Molecular Markers in Horticulture 1100. https://doi.org/10.17660/ActaHortic.2015.1100.1
  3. Boudichevskaia, A., Flachowsky, H., Dunemann, F. (2009). Identification and molecular analysis of candidate genes homologous to HcrVf genes for scab resistance in apple. Plant Breed., 128(1), 84–91. https://doi.org/10.1111/j.1439-0523.2008.01537.x
  4. Brancher, T.L., Hawerroth, M.C., Kvitschal, M.V., Manenti, D.C., Guidolin, A.F. (2020). Self-incompatibility alleles in important genotypes for apple breeding in Brazil. Crop Breed. Appl. Biotechnol., 20(4), 1–9. https://doi.org/10.1590/1984-70332020v20n4a54
  5. Brite, E.B. (2021). The origins of the apple in Central Asia. J. World Prehist., 34(2), 159–193. https://doi.org/10.1007/s10963-021-09154-8
  6. Broothaerts, W., Van Nerum, I., Keulemans, J. (2004). Update on and review of the incompatibility (S-) genotypes of apple cultivars. HortScience, 39(5), 943–947. https://doi.org/10.21273/HORTSCI.39.5.943
  7. Cieślińska, M., Borisova, A. (2019). Molecular characterization of ‘Candidatus Phytoplasma mali’ strains from Bulgaria and Poland. Acta Sci. Pol. Hortorum Cultus, 18(5), 181–188. https://doi.org/10.24326/asphc.2019.5.18
  8. Cova, V., Bandara, N.L., Liang, W., Tartarini, S., Patocchi, A., Troggio, M., Velasco, R., Komjanc, M. (2015). Fine mapping of the Rvi5 (Vm) apple scab resistance locus in the ‘Murray’ apple genotype. Mol. Breed., 35(10), 200. https://doi.org/10.1007/s11032-015-0396-0
  9. Dayton, D., Williams, E. (1968). Independent genes in Malus for resistance to Venturia inaequalis. Am. Soc. Hort. Sci., 92, 89–94.
  10. Dayton, D., Williams, E. (1970). Additional allelic genes in Malus for scab resistance of two reaction types. J. Am. Soc. Hort. Sci., 95(6), 735–736. https://doi.org/10.21273/JASHS.95.6.735
  11. Dellaborta, S., Wood, J., Hicks, J. (1983). A plant DNA mini preparation. Version II. Plant Mol. Biol. Rep., 1, 19–21. https://doi.org/10.1007/BF02712670
  12. Durel, C.-E., Denancé, C., Brisset, M.-N. (2009). Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome, 52(2), 139–147. https://doi.org/10.1139/G08-111
  13. Emeriewen, O., Richter, K., Kilian, A., Zini, E., Hanke, M.- V., Malnoy, M., Peil, A. (2014). Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Mol. Breed., 34, 407– 419. https://doi.org/10.1007/s11032-014-0043-1
  14. Emeriewen, O. F., Peil, A., Richter, K., Zini, E., Hanke, M.-V., Malnoy, M. (2017). Fire blight resistance of Malus × arnoldiana is controlled by a quantitative trait locus located at the distal end of linkage group 12. Eur. J. Plant Pathol., 148, 1011–1018. https://doi.org/10.1007/s10658-017-1152-6
  15. Emeriewen, O. F., Piazza, S., Cestaro, A., Flachowsky, H., Malnoy, M., Peil, A. (2022). Identification of additional fire blight resistance candidate genes following MinION Oxford Nanopore sequencing and assembly of BAC clone spanning the Malus fusca resistance locus. J. Plant Pathol., 104(4), 1509–1516. https://doi.org/10.1007/s42161-022-01223-x
  16. Emeriewen, O.F., Richter, K., Berner, T., Keilwagen, J., Schnable, P.S., Malnoy, M., Peil, A. (2020). Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Sci. Rep., 10(1), 16358. https://doi.org/10.1038/s41598-020-73393-6
  17. Emeriewen, O.F., Richter, K., Flachowsky, H., Malnoy, M., Peil, A. (2021). Genetic analysis and fine mapping of the fire blight resistance locus of Malus × arnoldiana on linkage group 12 reveal first candidate genes. Front. Plant Sci., 12, 667133. https://doi.org/10.3389/fpls.2021.667133
  18. Emeriewen, O.F., Richter, K., Piazza, S., Micheletti, D., Broggini, G.A., Berner, T., Keilwagen, J., Hanke, M.-V., Malnoy, M., Peil, A. (2018). Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol. Breed., 38, 1–14. https://doi.org/10.1007/s11032-018-0863-5
  19. Erdin, N., Tartarini, S., Broggini, G.A., Gennari, F., Sansavini, S., Gessler, C., Patocchi, A. (2006). Mapping of the apple scab-resistance gene Vb. Genome, 49(10), 1238–1245. https://doi.org/10.1139/g06-096
  20. Fahrentrapp, J., Broggini, G.A., Kellerhals, M., Peil, A., Richter, K., Zini, E., Gessler, C. (2013). A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet. Genom., 9, 237–251. https://doi.org/10.1007/s11295-012-0550-3
  21. FAO (2024). FAOSTAT. Available: http://www.fao.org/faostat/en/#data/QC [date of access: 4.11.2024].
  22. Galli, P., Broggini, G.A.L., Kellerhals, M., Gessler, C., Patocchi, A. (2010). High-resolution genetic map of the Rvi15 (Vr2) apple scab resistance locus. Mol. Breed., 26, 561– 572. https://doi.org/10.1007/s11032-010-9391-7
  23. Gencer, O., Serçe, S. (2022). Determination of morphological, pomological and molecular variations among apples in Niğde, Turkey using iPBS primers. J. Agric. Sci., 28(2), 296–306. https://doi.org/10.15832/ankutbd.876493
  24. Gessler, C., Patocchi, A., Sansavini, S., Tartarini, S., Gianfranceschi, L. (2006). Venturia inaequalis resistance in apple. Crit. Rev. Plant Sci., 25(6), 473–503. https://doi.org/10.1080/07352680601015975
  25. Gianfranceschi, L., Seglias, N., Tarchini, R., Komjanc, M., Gessler, C. (1998). Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet., 96(8), 1069–1076. https://doi.org/10.1007/s001220050841
  26. Gygax, M., Gianfranceschi, L., Liebhard, R., Kellerhals, M., Gessler, C., Patocchi, A. (2004). Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor. Appl. Genet., 109(8), 1702– 1709. https://doi.org/10.1007/s00122-004-1803-9
  27. Hammer, Ø., Harper, D.A. (2001). Past: Paleontological statistics software package for educaton and data anlysis. Palaeontol. Electron., 4(1), 9.
  28. Höfer, M., Flachowsky, H., Schröpfer, S., Peil, A. (2021). Evaluation of scab and mildew resistance in the gene bank collection of apples in Dresden-Pillnitz. Plants, 10(6), 1227. https://doi.org/10.3390/plants10061227
  29. Janssens, G., Goderis, I., Broekaert, W., Broothaerts, W. (1995). A molecular method for S-allele identification in apple based on allele-specific PCR. Theoret. Appl. Genet., 91, 691–698. https://doi.org/10.1007/bf00223298
  30. Karataş, M.D., Hazrati, N., Özmen, C.Y., Hasanzadeh, M., Altıntaş, S., Akçay, M.E., Ergül, A. (2023). Identification of self incompatibility (S) alleles in Turkish apple gene sources using allele-specific PCR. J. Agric. Sci., 29(1), 287–297. https://doi.org/10.15832/ankutbd.930238
  31. Khankishiyeva, E. (2020). Screening for resistance against Venturia inaequalis (cke.) wint and Podosphaera leucotricha in introduced varieties of apple in Azerbaijan, using molecular markers. Agric.Vet. Sci., 4(3), 104–115.
  32. Lemaire, C., De Gracia, M., Leroy, T., Michalecka, M., Lindhard-Pedersen, H., Guerin, F., Gladieux, P., Le Cam, B. (2016). Emergence of new virulent populations of apple scab from nonagricultural disease reservoirs. New Phytol., 209(3), 1220–1229. https://doi.org/10.1111/nph.13658
  33. Lyzhin, A., Saveleva, N. (2021). Identification of QTL FBF7 fire blight resistance in apple varieties germplasm. Inter¬national Scientific Conference “Biologization of the Intensification Processes in Horticulture and Viticulture”, BIO Web Conf. 34.
  34. MacHardy, W.E. (1996). Apple Scab: Biology, Epidemiology, and Management. American Phytopathological Society.
  35. Madenova, A., Aitymbet, Z., Bolat, M., Kaldybayeva, D., Galymbek, K., Kuan, A., Kabylbekova, B., Irkitbay, A., Yeszhanov, T., Bakirov, S. (2024). Screening of apple cultivars for scab resistance in Kazakhstan. Horticulturae, 10(2), 184. https://doi.org/10.3390/horticulturae10020184
  36. Mansfeld, B.N., Yocca, A., Ou, S., Harkess, A., Burchard, E., Gutierrez, B., van Nocker, S., Gottschalk, C. (2023). A haplotype resolved chromosome‐scale assembly of North American wild apple Malus fusca and comparative ge¬nomics of the fire blight Mfu10 locus. Plant J., 116(4), 989–1002. https://doi.org/10.1111/tpj.16433
  37. Muñoz-Sanz, J. V., Zuriaga, E., Cruz-García, F., McClure, B., Romero, C. (2020). Self-(in) compatibility systems: target traits for crop-production, plant breeding, and biotechnology. Front. Plant Sci., 11, 513563. https://doi.org/10.3389/fpls.2020.00195
  38. Padmarasu, S., Sargent, D., Jaensch, M., Kellerhals, M., Tartarini, S., Velasco, R., Troggio, M., Patocchi, A. (2014). Fine-mapping of the apple scab resistance locus Rvi12 (Vb) derived from ‘Hansen’s baccata# 2’. Mol. Breed., 34, 2119–2129. https://doi.org/10.1007/s11032-014-0167-3
  39. Papp, D., Békefi, Z., Balotai, B., Tóth, M. (2015). Identification of marker alleles linked to fire blight resistance QTLs in apple genotypes. Plant Breed., 134(3), 345– 349. https://doi.org/10.1111/pbr.12258
  40. Parravicini, G., Gessler, C., Denance, C., Lasserre‐Zuber, P., Vergne, E., Brisset, M.N., Patocchi, A., Durel, C.E., Broggini, G.A. (2011). Identification of serine/threonine kinase and nucleotide‐binding site–leucine‐rich repeat (NBS‐LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol. Plant Pathol., 12(5), 493–505. https://doi.org/10.1111/j.1364-3703.2010.00690.x
  41. Patocchi, A., Bigler, B., Koller, B., Kellerhals, M., Gessler, C. (2004). Vr2: a new apple scab resistance gene. Theor. Appl. Genet., 109, 1087–1092. https://doi.org/10.1007/s00122-004-1723-8
  42. Patocchi, A., Frei, A., Frey, J., Kellerhals, M. (2009). Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol. Breed. 24, 337–347. https://doi.org/10.1007/s11032-009-9295-6
  43. Patocchi, A., Walser, M., Tartarini, S., Broggini, G.A., Gennari, F., Sansavini, S., Gessler, C. (2005). Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome, 48(4), 630–636. https://doi.org/10.1139/G05-036
  44. Peil, A., Bus, V.G., Geider, K., Richter, K., Flachowsky, H., Hanke, M.-V. (2009). Improvement of fire blight resis¬tance in apple and pear. Int. J. Plant Breed., 3(1), 1–27.
  45. Peil, A., Garcia‐Libreros, T., Richter, K., Trognitz, F., Trognitz, B., Hanke, M.V., Flachowsky, H. (2007). Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breed., 126(5), 470– 475. https://doi.org/10.1111/j.1439-0523.2007.01408.x
  46. Peil, A., Howard, N.P., Bühlmann-Schütz, S., Hiller, I., Schouten, H., Flachowsky, H., Patocchi, A. (2023). Rvi4 and Rvi15 are the same apple scab resistance genes. Mol. Breed., 43(10), 74. https://doi.org/10.1007/s11032-023-01421-0
  47. Peil, A., Patocchi, A., Hanke, M.-V., Bus, V.G.M. (2018). Apple cultivar Regia possessing both Rvi2 and Rvi4 resistance genes is the source of a new race of Venturia inaequalis. Eur. J. Plant Pathol., 151, 533–539. https://doi.org/10.1007/s10658-017-1383-6
  48. Pereira-Lorenzo, S., Fischer, M., Ramos-Cabrer, A.M., Castro, I. (2018). Apple (Malus spp.) Breeding: Present and Future. In: Al-Khayari, J., Jain, S., Johnson, D. (eds), Advances in Plant Breeding Strategies: Fruits. Springer, 3–29. https://doi.org/10.1007/978-3-319-91944-7_1
  49. Porsche, F.M., Pfeiffer, B., Kollar, A. (2017). A new phytosanitary method to reduce the ascospore potential of Venturia inaequalis. Plant Dis., 101(3), 414–420. https://doi.org/10.1094/PDIS-07-16-0994-RE
  50. Ropelewska, E., Lewandowski, M. (2024). A comparative study of distinguishing apple cultivars and a clone based on features of selected fruit parts and leaves using image processing and artificial intelligence. Acta Sci. Pol. Hortorum Cultus, 23(2), 79–92. https://doi.org/10.24326/asphc.2024.5335
  51. Sakurai, K., Brown, S.K., Weeden, N. (2000). Self-incompatibility alleles of apple cultivars and advanced selections. HortScience, 35(1), 116–119. https://doi.org/10.21273/HORTSCI.35.1.116
  52. Sedov, E. (2014). Apple breeding programs and methods, their development and improvement. Russian J. Genet. Appl. Res., 4(1), 43–51. https://doi.org/10.1134/S2079059714010092
  53. Sobiczewski, P., Iakimova, E., Mikiciński, A., Węgrzynowicz‐Lesiak, E., Dyki, B. (2017). Necrotrophic behaviour of Erwinia amylovora in apple and tobacco leaf tissue. Plant Pathol., 66(5), 842–855. https://doi.org/10.1111/ppa.12631
  54. Sobiczewski, P., Keller-Przybyłkowicz, S., Lewandowski, M., Mikiciński, A., Maciorowski, R. (2021). Phenotypic and marker-assisted characterization of new apple genotypes with high resistance to fire blight. Eur. J. Plant Pathol., 161(1), 49–61. https://doi.org/10.1007/s10658-021-02303-x
  55. Stachowiak, A., Świerczyński, S. (2012). Phenological, morphological and genetic variability of 15 clones of rootstocks for apple. Acta Sci. Pol. Hortorum Cultus, 11(1), 183–192.
  56. Tegtmeier, R., Cobb-Smith, D., Zhong, G.-Y., Khan, A. (2023). Identification and marker development of a moderate-effect fire blight resistance QTL in M. sieversii, the primary progenitor of domesticated apples. Tree Genet. Gen., 19(6), 50. https://doi.org/10.1007/s11295-023-01626-6
  57. TÜİK (2024). Central Distribution System. Available: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr [date of access: 4.12.2024].
  58. Van Den Bosch, F., Lopez‐Ruiz, F., Oliver, R., Paveley, N., Helps, J., Van Den Berg, F. (2018). Identifying when it is financially beneficial to increase or decrease fungicide dose as resistance develops. Plant Pathol., 67(3), 549–560. https://doi.org/10.1111/ppa.12787
  59. Vinatzer, B.A., Patocchi, A., Tartarini, S., Gianfranceschi, L., Sansavini, S., Gessler, C. (2004). Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab‐resistant accessions in Malus germplasm. Plant Breed., 123(4), 321–326. https://doi.org/10.1111/j.1439-0523.2004.00973.x
  60. Zwet, T., Orolaza-Halbrendt, N., Zeller, W. (2012). Fire blight: history, biology, and management. American Phytopathological Society. https://doi.org/10.1094/9780890544839

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.