Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Enhancing quality in Bidens ferulifolia: interplay of light extension and growth retardants in greenhouse cultivation

DOI: https://doi.org/10.24326/asphc.2025.5580
Submitted: 31 July 2025
Published: 13.11.2025

Abstract

This study examined the effects of photoperiod extension (16-hour day) and growth retardant application during the liner stage (weeks 5–11) on nutrient uptake and plant quality in two Bidens ferulifolia cultivars (Fire&Spicy and Hot&Spicy). Treatments included supplemental lighting (L), growth retardant (R), both (L-R), and a control (NL-NR). Mature plants were assessed for plant architecture, flowering, nutrient status, photosynthetic pigments, and soluble sugars. All plants branched vigorously, but L-R produced the most commercially favourable structure, with fewer long shoots and more short ones. L-R also yielded the shortest shoots and highest dry mass, especially in Hot&Spicy alongside increased P and Zn. Retardants reduced fresh mass but increased levels of N, P, K, S, and Cu, while decreasing Fe and Mn. Light-treated plants have more fully open flowers but had similar bud numbers. Supplemental light improved nutrient accumulation, chlorophyll a, carotenoids, and sugar content, indicating better physiological efficiency. Cultivars responded differently to R, with Fire&Spicy showing greater micronutrient uptake. Combining light and retardant during the liner stage enhances visual quality and nutrient efficiency in B. ferulifolia, offering growers a strategy to improve crop performance while potentially reducing reliance on chemical growth regulation. 

References

  1. Abdullah, S., Munir, M., Javed, B., Ahmad, M., Abbasi, B.A., Dawood, S., Zhang, L. (2025). The systematics and biogeography of genus Bidens. In: Bibi, Y., Zahara, K., Qayyum, A., Jenks, M.A. (eds). The genus Bidens chemistry and pharmacology, Springer, Singapore, 3–20. https://doi.org/10.1007/978-981-96-4257-1_1
  2. Adams, S.R., Langton, F.A. (2005). Photoperiod and plant growth: a review. J. Hortic. Sci. Biotechnol., 80(1), 2–10. https://doi.org/10.1080/14620316.2005.11511882
  3. Barker, A.V., Pilbeam, D.J. (2015). Handbook of plant nutrition. 2nd ed. CRC Press, Taylor & Francis Group: Boca Raton–London–New York.
  4. Bergstrand, K.J.I. (2017). Methods for growth regulation of greenhouse produced ornamental pot-and bedding plants – a current review. Folia Hortic., 29(1), 63–74. https://doi.org/10.1515/fhort-2017-0007
  5. Bergstrand, K.J.I., Schüssler, H.K. (2012). Growth and photosynthesis of ornamental plants under different light qualities. Acta Hortic., 956, 109–115. https://doi.org/10.17660/ActaHortic.2012.956.13
  6. Brandon, M., Kozai, T., Lu, N., Yamaguchi, T., Takagaki, M., Maruo, T., Yamori, W. (2018). Next revolution of agriculture. A review of innovations in plant factories. In: Pessarakli, M. (eds). Handbook of Photosynthesis. 3rd ed. CRC Press, Taylor & Francis Group, Boca Raton–London–New York, 723–737.
  7. Brini, F., Mseddi, K., Brestic, M., Landi, M. (2022). Hormone-mediated plant responses to light quality and quantity. Environ. Exp. Bot. 202, 105026. https://doi.org/10.1016/j.envexpbot.2022.105026
  8. Bryson, G.M., Mills, H.A. (2014). Plant analysis handbook. A guide to plant nutrition and interpretation of plant analysis for agronomic and horticultural crops. Micro-Macro Publishing, Inc. Georgia.
  9. Bueno, P.M.C., Vendrame W.A. (2024). Wavelength and light intensity affect macro- and micronutrient uptake, stomata number, and plant morphology of common bean (Phaseolus vulgaris L.). Plants 13(3), 441. https://doi.org/10.3390/plants13030441
  10. Collado, C.E., Hernández, R. (2022). Effects of light intensity, spectral composition, and paclobutrazol on the morphology, physiology, and growth of petunia, geranium, pansy, and dianthus ornamental transplants. J. Plant Growth Regul. 41, 461–478. https://doi.org/10.1007/s00344-021-10306-5
  11. Dische, Z. (1962). General color reactions. In: Whistler R.L., Wolfram, M.L. (eds). 187 Carbohydrate chemistry. Academic Press, New York, 477–512.
  12. Dwyer, M. (2022). Bidens spp. Greenhouse management. Available: https://www.greenhousemag.com/article/bidens-durable-annuals/ [date of access: 26.07.2025].
  13. Epstein, E., Bloom, A.J. (2005). Mineral nutrition of plants: principles and perspectives. 2nd ed. Sunderland, Mass Sinauer Associates, Inc.
  14. Faust, J.E., Dole, J.M., Lopez, R.G. (2016). The floriculture vegetative cutting industry. Hortic. Rev. 44(44), 121–172. https://doi.org/10.1002/9781119281269.ch3
  15. Gent, M.P., McAvoy, R.J. (2024). Plant growth retardants in ornamental horticulture: A critical appraisal. In: Basra, A. (ed.). Plant growth regulators in agriculture and horticulture, CRC Press, Taylor & Francis Group, Boca Raton–London–New York, 89–145. https://doi.org/10.1201/9781003578505
  16. Jiang, K., Peng, S., Yin, Z., Li, X., Xie, L., Shen, M., Li, D., Gao, J. (2024). Effects of N, P, K nutrition levels on the growth, flowering attributes and functional components in Chrysanthemum morifolium. Horticulturae, 10(3), 226. https://doi.org/10.3390/horticulturae10030226
  17. Jun, S.E., Shim, J.S., Park, H.J. (2023). Beyond NPK: mineral nutrient-mediated modulation in orchestrating flowering time. Plants 12, 3299. https://doi.org/10.3390/plants12183299
  18. Kowalczyk, K., Mirgos, M., Sobczak-Samburska, A., Przybył, J.L., Kowalczyk, W., Geszprych, A., Kalisz, S., Łaźny, R., Gajewski, M., Gajc-Wolska, J. (2024). Effect of growing pink tomato plants with LED supplementary lighting in a greenhouse covered with diffusion glass on post-harvest fruit quality. Acta Sci. Pol. Hortorum Cultus, 23(6), 57–74. https://doi.org/10.24326/asphc.2024.5374
  19. Liebers, M., Pfannschmidt, T. (2024). New horizons in light control of plant photomorphogenesis and development. Front. Photobiol. 1, 1346705. https://doi.org/10.3389/fphbi.2023.1346705
  20. Llewellyn, D., Schiestel, K., Zheng, Y. (2020). Increasing levels of supplemental LED light enhances the rate of flower development of greenhouse-grown cut gerbera. Agronomy, 10(9), 1332. https://doi.org/10.3390/agronomy10091332
  21. Marschner, P. (2012). Mineral nutrition of higher plants. Academic Press Elsevier. https://doi.org/10.1016/C2009-0-63043-9
  22. McLoughlin, K.T. (2000). Tree growth regulators for management of trees in electric utility rights-of-way. A literature review and current status. Final Report. Electric Power Research Institute, Inc., Pleasant Hill, USA. Available: https://www.epri.com/research/products/1000317 [date of access: 26.07.2025].
  23. Meng, Q., Runkle, E.S. (2014). Controlling flowering of photoperiodic ornamental crops with light-emitting diode lamps: a coordinated grower trial. HortTechnology, 24(6), 702–711. https://doi.org/10.21273/HORTTECH.24.6.702
  24. Morrow, R.C. (2008). LED lighting in horticulture. HortScience, 43(7), 1947–1950. https://doi.org/10.21273/HORTSCI.43.7.1947
  25. Munir, M., Alhajhoj, M.R. (2017). Plant height control of obligate long day herbaceous annuals using plant growth retardants and light. J. Appl. Hortic., 19(3), 241–244.
  26. Nau, J., Calkins, B., Westbrook, A. (2021). Crop culture Bidens. In: Nau, J., Calkins, B., Westbrook, A. (eds). Ball RedBook Crop culture and production. Ball Publishing, Chicago.
  27. Nowak, J. (2003). Wpływ stężenia pożywki i retardantów wzrostu na wzrost i kwitnienie uczepu złocistego (Bidens aurea (Ait.) Scheriff) [The effect of nutrient solution concentration and growth retardants on growth and flowering of bidens (Bidens aurea (Ait.) Scheriff)]. Zesz. Probl. Postęp. Nauk Rol. 491, 181–186. [In Polish].
  28. PN-ISO 6496:2002. Pasze. Oznaczanie wilgoci i innych substancji lotnych. Polski Komitet Normalizacyjny. [Feed. Determination of moisture and other volatile substances. Polish Committee for Standardization].
  29. PN-EN ISO 712:2012. Zboża i przetwory zbożowe. Oznaczanie wilgotności. Rutynowa metoda odniesienia. Polski Komitet Normalizacyjny. [Cereals and cereal products. Determination of moisture. Routine reference method. Polish Committee for Standardization].
  30. Pobudkiewicz, A. (2008). The influence of growth retardants and cytokinins on flowering of ornamental plants. Acta Agrobot., 61(1), 137–141. https://doi.org/10.5586/aa.2008.018
  31. Rademacher, W. (2000). Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Ann. Rev. Plant Biol., 51(1), 501–531. https://doi.org/10.1146/annurev.arplant.51.1.501
  32. Runkle, E.S. (2007). Maximizing supplemental lighting for greenhouse crops. Michigan State University MSU Extension. Available: https://www.canr.msu.edu/resources/maximizing_supplemental_lighting [date of access: 26.07.2025].
  33. Runkle, E.S., Blanchard, M.G., Faust, J.E. (2011). Energy-efficient greenhouse lighting of ornamentals. Acta Hortic. 907, 37–44. https://doi.org/10.17660/ActaHortic.2011.907.4
  34. Sáez-Plaza, P., Navas, M.J., Wybraniec, S., Michałowski, T., Asuero, A.G. (2013). An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 43(4), 224–272. https://doi.org/10.1080/10408347.2012.751787
  35. Sumanta, N., Haque, C.I., Nishika, J., Suprakash, R. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci., 4(9), 63.
  36. Szewczyk-Taranek, B., Domagała-Świątkiewicz, I., Kapczyńska, A., Marcinkowski, P., Pawłowska, B. (2025). Supplementary light and retardant application during the rooting stage improve the final performances of Petunia and Calibrachoa plants. Agronomy, 15(7), 1644. https://doi.org/10.3390/agronomy15071644
  37. Vyavahare, G.D., Kim, J.Y., Kim, H.N., Sin, S.K., Kim, E.J., Park, J.H. (2024). Evaluating the effect of supplementary lighting on the growth and physiological activity of roses during winter by plant-induced electrical signal. Folia Hort., 36(4), 1–13. https://doi.org/10.2478/fhort-2024-0033
  38. Walliser, B., Marinovic, S., Kornpointner, C., Schlosser, C., Abouelnasr, M., Hutabarat, O.S., Haselmair-Gosch, Ch., Molitor, Ch., Stich, K., Halbwirth, H. (2022). The (Bio) chemical base of flower colour in Bidens ferulifolia. Plants, 11(10), 1289. https://doi.org/10.3390/plants11101289
  39. Whipker, B.E. (2019). Plant growth regulators for annuals. Grower Talks Mag. Ball Publishing, West Chicago, IL. Available: https://www.growertalks.com/pdf/Annuals_PGR_Guide_2019.pdf [date of access: 20.07.2025].
  40. Wollaeger, H.M., Runkle, E.S. (2014). Producing commercial-quality ornamental seedlings under sole-source LED lighting. Acta Hortic. 1037, 241–248. https://doi.org/10.17660/ActaHortic.2014.1037.31
  41. Zhang, Y., Liu, B., Kong, F., Chen, L. (2023). Nutrient-mediated modulation of flowering time. Front. Plant Sci. 14, 1101611. https://doi.org/10.3389/fpls.2023.1101611
  42. Zheng, R., Wu, Y., Xia, Y. (2012). Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium oriental hybrids ‘Sorbonne’. J. Zhejiang Univ. Sci. B, 13(2), 136–144. https://doi.org/10.1631/jzus.B1000425

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 85 86 87 88 89 90 91 92 93 94 > >> 

You may also start an advanced similarity search for this article.