Characterisation of some ornamental plant species with edible flowers

ANNA STEFANIAK

Katedra Ogrodnictwa, Wydział Kształtowania Środowiska i Rolnictwa, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. J. Słowackiego 17, 71-434 Szczecin

MONIKA GRZESZCZUK

Katedra Ogrodnictwa, Wydział Kształtowania Środowiska i Rolnictwa, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. J. Słowackiego 17, 71-434 Szczecin



Abstract

There are several reasons why interest in edible flowers is continuously increasing nowadays. Among them are new food-processing technologies as well as new logistic methods and quick distribution of cooled and well preserved foodstuffs. Other reasons include the producers’ and manufacturers’ efforts to extend and improve their ready-to-cook and functional food and also to introduce new kinds of products. Edible flowers are characterised by high attractive sensory values: form, colour, taste and aroma as well as their high antioxidant activity – recently proved by scientists, high content of polyphenols (flavonoids, phenolic acids), carotenoids, vitamin C, minerals and aromatic components. The aim of this article is to popularise edible flowers as a rich source of bioactive phytochemicals, important for human health and the food industry, medicine, cosmetic and aromatherapy. Characteristics of the following plant genera and species of edible flowers are presented: daylily, peony, bee balm, dianthus, snapdragon and monkeyflower.

Keywords:

biological value, antioxidants, Hemerocallis, Paeonia, Monarda, Dianthus, Antirrhinum

Ahmad F., Tabassum N., 2013. Preliminary phytochemical, acute oral toxicity and antihepatotoxic study of roots of Paeonia officinalis Linn. Asian Pac. J. Trop. Biomed. 3 (1), 64–68.

Ahmad F., Tabassum N., Rasool S., 2012. Medicinal uses and phytoconstituents of Paeonia officinalis. Int. Res. J. Pharm. 3 (4), 85–87.

Benvenuti S., Bortolotti E., Maggini R., 2016. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 199, 170–177.

Bor J.Y., Chen H.Y., Yen G.C., 2006. Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. J. Agr. Food Chem. 54, 1680–1686.

Bown D., 2014. Encyclopedia of Herbs. The Royal Horticultural Society, Dorling Kindersley Ltd., London.

Brown K., 2011. Edible flowers. Aquamarine, Wigston, UK.

Burnie G. (red.), 2005. Botanica. Rośliny ogrodowe. Könemann, Königswinter.

Carrió E., Jiménez J.F., Sánchez-Gómez P., Güemes J., 2009. Reproductive biology and conservation implications of three endangered snapdragon species (Antirrhinum, Plantaginaceae). Biol. Cons. 142, 1854–1863.

Choi H.S., Seo H.-S., Kim J.H., Um J.Y., Shin Y.C., Ko S.-G., 2012. Ethanol extract of Paeonia suffruticosa Andrews (PSE) induced AGS human gastric cancer cell apoptosis via fasdependent apoptosis and MDM2-p53 pathways. J. Biomed. Sci. 19, 1–12.

Cichewicz R.H., Lim K.C., Mc Kerrow J.H., Nair M.G., 2002. Kwanzoquinones A–G and other constituents of Hemerocallis fulva ‘Kwanzo’ roots and their activity against the human pathogenic trematode Schistosoma mansoni. Tetrahedron 58, 8597–8606.

Cichewicz R.H., Nair M.G., 2002. Isolation and characterization of stelladerol, a new antioxidant naphthalene glycoside, and other antioxidant glycosides from edible daylily (Hemerocallis) flowers. J. Agric. Food Chem. 50 (1), 87–91.

Cichewicz R.H., Zhang Y., Seeram N.P., Nair M.G., 2004. Inhibition of human tumor cell proliferation by novel anthraquinones from daylilies. Life Sci. 74, 1791–1799.

Ciuruşniuc A.-M., Robu T., 2012. Study of the behaviour of cultivated species of the genus Monarda L. In vaslui county, to introduce them in cultivation as medicinal, aromatic and decorative plants. Lucrări Ştiinţifice, Agronomie 55 (2), 309–312.

Creasy R., 1999. The Edible Flower Garden. Periplus Editions (HK), Boston.

Czerpak R., Jabłońska-Trypuć A., 2008. Roślinne surowce kosmetyczne. MedPharm Polska, Wrocław.

Deepika S.D., Lakshmi S.G., Sowmya L.K., Sulakshana M., 2014. Edible flowers – A Review article. Int. J. Adv. Res. Sci. Technol. 3 (1), 51–57.

Deyuan H., Kaiyu P., Turland N.J., 2001. Paeoniaceae. Flora of China 6, 127–132.

Fishman L., Beardsley P.M., Stathos A., Williams C.F., Hill J.P., 2015. The genetic architecture of traits associated with the evolution of self-pollination in Mimulus. New Phytol. 205, 907–917.

Friedman J., Twyford A.D., Willis J.H., Blackman B.K., 2015. The extent and genetic basis of phenotypic divergence in life history traits in Mimulus guttatus. Mol. Ecol. 24, 111–122.

Fronczak J. (red.), 2009. Wielka księga ziół. Reader’s Digest Przegląd, Warszawa.

Fu M., He Z., Zhao Y., Yang J., Mao L., 2009. Antioxidant properties and involved compounds of daylily flowers in relation to maturity. Food Chem. 114, 1192–1197.

Gabryszewska E., 2010. The effects of glucose and growth regulators on the organogenesis of Paeonia lactiflora Pall. in vitro. J. Fruit Ornam. Plant Res. 18 (2), 309–320.

Geng J., Gao S., He Q., Gao Y., Zhang G., 2012. Using Hemerocallis ”Yellow flowers” as parents to breed fragrant and big flower cultivars. Acta. Hortic. 953 (35), 255–260.

Griesbach R.J., Batdorf L., 1995. Flower pigments within Hemerocallis fulva L. fm. fulva, fm. rosea, and fm. disticha. Hort. Sci. 30 (2), 353–354.

Gu L., Liu Y.-J., Wang Y.-B., Yi L.-T., 2012. Role for monoaminergic systems in the antidepressantlike effect of ethanol extracts from Hemerocallis citrina. J. Ethnopharmacol. 139, 780–787.

He D.-Y., Dai S.-M., 2011. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Front. Pharmacol. 2, 1–5.

Kao F.J., Chiang W.D., Hung M.L., 2015. Inhibitory effect of daylily buds at various stages of maturity on nitric oxide production and the involved phenolic compounds. LWT – Food Sci. Technol. 61, 130–137.

Kelsey J., Byers R.P., Bradshaw H.D., Riffel Jr., Riffell J.A., 2014. Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). J. Exp. Biol. 217, 614–623.

Kim H.J., Chang E.J., Cho S.H., Chung S.K., Park H.D., Choi S.W., 2002. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci. Biotechnol. Biochem. 66 (9), 1990–1993.

LaFountain A.M., Frank H.A., Yuan Y.-W., 2015. Carotenoid composition of the flowers of Mimulus lewisii and related species: Implications regarding the prevalence and origin of two unique, allenic pigments. Arch. Biochem. Biophys. 573, 32–39.

Lee B., Shin Y.-W., Bae E.-A., Han S.-J., Kim J.-S., Kang S.-S., Kim D.-H., 2008. Antiallergic effect of the root of Paeonia lactiflora and its constituents paeoniflorin and paeonol. Arch. Pharm. Res. 31 (4), 445–450.

Li C., Du H., Wang L., Shu Q., Zheng Y., Xu Y., Zhang J., Zhang J., Yang R., Ge Y., 2009. Flavonoid Composition and Antioxidant Activity of Tree Peony (Paeonia Section Moutan) Yellow Flowers. J. Agric. Food Chem. 57, 8496–8503.

Lim T.K., 2014. Edible medicinal and non medicinal plants. Vol. 7–8. Flowers. Springer Science+Business Media, Dordrecht.

Liu L., Chang L., Chou S., Hsiao Y., Chien Y., 2010. Studies on the antioxidant components and activities of the methanol extracts of commercially grown Hemerocallis fulva L. (daylily) in Taiwan. J. Food Biochem. 34, 90–104.

Lowry D.B., Hall M.C., Salt D.E., Willis J.H., 2009. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New Phytol. 183, 776–788.

Mazza G., Marshall H.H., 1992. Geraniol, linalool, thymol and carvacrol – rich essential oils from Monarda hybrids. J. Essent. Oil Res. 4 (4), 395–400.

Mlček J., Rop O., 2011. Fresh edible flowers of ornamental plants – a new source of nutraceutical foods. Trends Food Sci. Technol. 22, 561–569.

Nitta K., Yasumoto A.A., Yahara T., 2010. Variation of flower opening and closing times in F1 and F2 hybrids of daylily (Hemerocallis fulva; Hemerocallidaceae) and nightlily (H. citrina). Am. J. Bot. 97, 261–267.

Ożarowski A., Rumińska A., Suchorska K., Węglarz Z., 1990. Leksykon roślin leczniczych. PWRiL, Warszawa, 378–379.

Paeonia sp. 2002. Alternative Medicine Review Monographs, 287–292.

Papandreou V., Magiatis P., Chinou I., Kalpoutzakis E., Skaltsounis A.L., Tsarbopoulos A., 2002a. Volatiles with antimicrobial activity from the roots of Greek Paeonia taxa. J. Ethnopharmacol. 81, 101–104.

Papandreou V., Magiatis P., Kalpoutzakis E., Skaltsounis A.L., Harvala C., 2002b. Paeonicluside, a new salicylic glycoside from the Greek endemic species Paeonia clusii. Verlag Z. Naturforsch. 57 (3–4), 235–238.

Pathania A.S., Guru S.K., Verma M.K., Sharma C., Abdullah S.T., Malik F., Chandra S., Katoch M., Bhushan S., 2013. Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. Food Chem. Toxicol. 62, 246–254.

Ramadan M.F., El-Shamy H., 2013. Snapdragon (Antirrhinum majus) seed oil: Characterization of fatty acids, bioactive lipids and radical scavenging potential. Ind. Crop. Prod. 42, 373–379.

Roberts M., 2014. 100 Edible & Healing Flowers. Struik Nature, Cape Town, 78–79.

Rodriguez-Enriquez M.J., Grant-Downton R.T., 2012. A new day dawning: Hemerocallis (daylily) as a future model organism. AoB PLANTS 5: pls055; doi:10.1093/aobpla/pls055.

Rop O., Mlcek J., Jurikova T., Neugebauerova J., Vabkova J., 2012. Edible flowers – a new promising source of mineral elements in human nutrition. Molecules 17, 6672–6683.

Sang T., Crawford D.J., Stuessy T.F., 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84 (9), 1120–1136.

Savickienė N., Dagilytė A., Barsteigienė Z., Kazlauskas S., Vaičiūnienė J., 2002. Flavonoidų analizė raudonosios monardos (Monarda didyma L.) zieduose ir lapuose. Medicina 38 (11), 1119–1122.

Singhal A.K., Naithani V., Bangar O.P., 2012. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Venus Med. Res. Cent. 2 (2), 84–91.

Soare L.C., Ferde M., Stefanov S., Denkova Z., Nicolova R., Denev P., Ungureanu C., 2012. Antioxidant and antimicrobial properties of some plant extracts. Rev. Chim. (Bucharest), 63 (4), 432–434.

Startek L., Mynett K., 2003. Rośliny ozdobne. Hortpress Sp. z o.o., Warszawa.

Stirling M. 1993. Kwiaty. Ilustrowana encyklopedia. Elipsa, Warszawa.

Tai C.Y., Chen B.H., 2000. Analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by various treatments. J. Agric. Food Chem. 48, 5962–5968.

Tilford G.L., 1997. Edible and medicinal plants of the West. Mountain Press Publishing Company.

Titchmarsch A. (red.), 1993. A-Z of popular garden plants. Treasure Press, London.

Uezu E., 1998. Effects of Hemerocallis on sleep in mice. Psychiatr. Clin. Neurosci. 52, 136–137.

Voon H.C., Rajeev B., Karim A.A., Rosma, A., 2013. Composition of tree peony (Paeonia suffruticosa) and Chinese apple flower (Malus spp.) buds. Int. Food Res. J. 20 (3), 1173–1179.

Wang S.-H., Tang S.-W., Lam S.-H., Wang C.-C., Liu Y.-H., Lin H.-Y., Lee S.-S., Lin J.-Y., 2012. Aqueous extract of Paeonia suffruticosa inhibits migration and metastasis of renal cell carcinoma cells via suppressing VEGFR-3 pathway. Evid-Based Compl. Alt. Med. doi: 10.1155/2012/409823.

Yamada K., Murata T., Kobayashi K., Miyase T., Yoshizaki F., 2010. A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata. Phytochemistry 71, 1884–1891.

Yang H.O., Ko W.K., Kim J.Y., Ro H.S., 2004. Paeonif orin: an antihyperlipidemic agent from Paeonia lactif ora. Fitoterapia 75, 45–49.

Yi L.T., Li J., Li H.C., Zhou Y., Su B.F., Yang K.F., Jiang M., Zhang Y.T., 2012. Ethanol extracts from Hemerocallis citrina attenuate the decreases of brain-derived neurotrophic factor, TrkB levels in rat induced by corticosterone administration. J. Ethnopharmacol. 144, 328–334.

Zhang Y., Cichewicz R.H., Nair M.G., 2004. Lipid peroxidation inhibitory compounds from daylily (Hemerocallis fulva) leaves. Life Sci. 75, 753–763.

Zhang Y., Zhou R., Zhou F., Cheng H., Xia B., 2014. Total glucosides of peony attenuates 2,4,6- -trinitrobenzene sulfonic acid/ethanol-induced colitis in rats through adjustment of Th1/Th2 cytokines polarization. Cell Biochem. Biophys. 68, 83–95.

Published
2015-12-27



ANNA STEFANIAK 
Katedra Ogrodnictwa, Wydział Kształtowania Środowiska i Rolnictwa, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. J. Słowackiego 17, 71-434 Szczecin
MONIKA GRZESZCZUK 
Katedra Ogrodnictwa, Wydział Kształtowania Środowiska i Rolnictwa, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. J. Słowackiego 17, 71-434 Szczecin



License

Submitting an article for publication, the author declares that he has full economic and moral rights to the work and publication of his article will not infringe the rights of third persons. The author signs a statement on the originality of the work and the contribution of individuals.

When an author submits his article for publication in the „Annales Horticulturae” it means he grants licence to exploit copyright to his article under the Creative Commons licence – Attribution - Non-Commercial - No-Derivatives 4.0 (CC BY-NC-ND 4.0)


Most read articles by the same author(s)