CHANGES IN FRUIT YIELD AND PHOTOSYNTHESIS PARAMETERS IN DIFFERENT OLIVE CULTIVARS (Olea europaea L.) UNDER CON-TRASTING WATER REGIMES


Abstract

The evergreen tree olive (Olea europaea L.) is the only species of the genus Olea that produces edible fruits with high ecological and economic value. This tree species has developed a series of physiochemical mechanisms to tolerate drought stress and grow under adverse climatic environments. One of these mechanisms is photosynthesis activities, so that as yet little information achieved about the relations between olive production and photosynthetic parameters under drought conditions. An experiment was carried out during two consecutive years (2015–2017) to study the response of 20 different olive tree cultivars (Olea europaea L.) to drought stress. Several parameters like net photosynthetic rate (PN), stomatal conductance (GS), transpiration rate (TE), photosynthetic pigments (total chlorophyll, chlorophyll a, b and carotenoid) and fruit yield were measured. The results of combined analysis of variance for fruit yield and other measured traits showed that year, drought treatment, cultivar main effects and their interactions were highly significant. The results indicated that drought stress reduced all traits, however GS (42.80%), PN (37.21%) and TE (37.17%) significantly affected by drought. Lower reduction in photosynthetic performance (PN, GS and TE) in the cultivar T7 compared to other olive cultivars allowed them to maintain better fruit yield. Principal component analysis (PCA) identified two PCs that accounted for 82.04 and 83.27% of the total variation in photosynthetic parameters under optimal and drought stress conditions, respectively. Taken together, mean comparison, relative changes due to drought and biplot analysis revealed that cultivars ‘T7’, ‘Roghani’, ‘Koroneiki’, ‘Korfolia’ and ‘Abou-satl’ displayed better response against drought stress. According to our results, one olive cultivar namely ‘T7’, could be used in olive breeding programs to improve new high yielding cultivars with drought tolerance for use in the drought-prone environments.


Keywords

chlorophyll content; drought stress; fruit yield; olive; photosynthetic performance

Ahmadi, J., Pour‐Aboughadareh, A., Fabriki Ourang, S., Mehrabi, A.A., Siddique, K.H.M. (2018). Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol. Plant., 40, 90. DOI: 10.1007/s11738-018-2673-0
Ahmed, C.B., Rouina, B.B., Sensoy, S., Boukhris, M., Abdallah, F.B. (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environ. Exp. Bot., 67, 345–352. DOI: 10.1016/j.envexpbot.2009.07.006
Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Gonçalves, B.C., Ferreira, H.F., Correia, C.M. (2006). Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant. Sci., 170, 596–605. DOI: 10.1016/j.plantsci.2005.10.014
Bouchemal, K., Bouldjadj, R., Belbekri, M.N., Ykhlef, N., Djekoun, A. (2016). Differences in antioxidant enzyme activities and oxidative markers in ten wheat (Triticum durum Desf.) genotypes in response to drought, heat and paraquat stress. Arch. Agron. Soil. Sci., 63, 710–722. DOI: 10.1080/03650340.2016.1235267
Boussadia, O., Mariem, F.B., Mechri, B., Boussetta, W., Brahmn, M., El Hadjm S.B. (2008). Response to drought of two olive tree cultivars (cv. Koroneki and Meski). Sci Hortic., 116, 388–393. DOI: 10.1016/j.scienta.2008.02.016
Centritto, M., Lauteri, M., Monteverdi, M.C., Serraj, R. (2009). Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.
J. Exp. Bot., 60, 2325–39. DOI: 10.1093/jxb/erp123
Cochard, H., Coll, L., Roux, X.L., Amegilo, T. (2002). Unraveling the effects of plant hydraulics on stomatal closer during water stress in walnut. Plant. Physiol., 128, 282–290. DOI: 10.1104/pp.010400
Comas, L.H., Becker, S.R., Cruz, V.M. V., Byrne, P.F., Dierig, D.A. (2013). Root traits contributing to plant productivity under drought. Front. Plant Sci., 4, 1–16. DOI: 10.3389/fpls.2013.00442
Deng, X., Hu, Z.A., Wang, H.X., Wen, X.G., Kuang, T.Y. (2003). A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichain response to dehydration and rehydration. Plant. Sci., 165, 851–861. DOI: 10.1016/S0168-9452(03)00284-X
Dias, M., Correia, S., Serodio, J., Silva, A.M.S., Freitas, H., Santos, C. (2018). Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Sci. Hortic., 231, 31–35. DOI: 10.1016/j.scienta.2017.12.007
Ergen, N.Z., Budak, H. (2009). Sequencing over 13000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant. Cell. Environ., 32, 220–236. DOI: 10.1111/j.1365-3040.2008.01915.x
FAOSTAT. (2015). Food and Agriculture Organization, FAOSTAT Database. Available at: http://faostat3fao.org/browse/Q/QC/E
Fernandes-Silva, A.A., Ferreira, T.C., Correia, C.M., Malheiro, A.C., Villalobos, F.J. (2010). Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant. Soil., 333, 35–47. DOI: 10.1007/s11104-010-0294-5
Fernandez, J.E., Moreno, F., Girón, I. F., Blázquez, O.M. (1997). Stomatal control of water use in olive tree leaves. Plant. Soil., 190, 179–192. DOI: 10.1023/A:1004293026973
Filippou, M., Fasseas, C., Karabourniotis, G. (2007). Photosynthetic characteristics of olive tree (Olea europaea) bark. Tree Physiol., 27, 977–984. DOI: 10.1093/treephys/27.7.977
Flexas, J., Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot., 89, 183–189. DOI: 10.1093/aob/mcf027
Gholami, R., Sarikhani, H., Arji, I. (2016). Effects of Deficit Irrigation on Some Physiological and Biochemical Characteristics of Six Commercial Olive Cultivars in Field Conditions. Iranian J. Hortic. Sci. Technol. (IJHST), 17(1), 39–52.
Giorio, P., Sorrentino, G., d’Andria, R. (1999). Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Agric. Water Manag., 42, 95–104. DOI: 10.1016/S0098-8472(99)00023-4
Guerfel, M., Boujnah, D., Baccouri, B., Zarrouk, M. (2007). Evaluation of morphological and physiological traits for drought tolerance in 12 Tunisian olive varieties (Olea europaea L.). J. Agron., 6, 356–361.
Holding, D., Streich, A.M. (2013). Plant growth processes: Transpiration, photosynthesis, and respiration. University of Nebraska Cooperative Extension.
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agri. Biol., 11, 100–105.
Kadkhodaie, A., Razmjoo, J., Zahedi, M., Pessarakli, M. (2014). Selecting sesame genotypes for drought tolerance based on some physiochemical traits. Agron. J., 106, 111–118. DOI: 10.2134/agronj2013.0260
Lauteri, M., Haworth, M., Serraj, R., Monteverdi, M.C., Centritto, M. (2014). Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PloS ONE, 9, e109054. DOI: 10.1371/journal.pone.0109054
Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11, 591–592.
Moriana, A., Villalobos, F., Fereres, J. (2002). Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant Cell Environ., 25, 395–405. DOI: 10.1046/j.0016-8025.2001.00822.x
Percival, G.C., Sheriffs, C.N. (2002). Identification of drought-tolerance woody perennials using chlorophyll fluorescence. J. Arboric., 28, 215–223.
Pinherio, C., Chaves, M.M. (2011). Photosynthesis and dro- ught: can we make metabolic connections from available data? J. Exp. Bot., 63, 869–882. DOI: 10.1093/jxb/erq340
Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A., Moghaddam, M., Siddique, K.H.M. (2017). Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol. Plant., 39, 106. DOI: 10.1007/s11738-017-2403-z
Pradhan, G., Prasad Vara Fritz, A.K., Kirkhan, M., Gill, B. (2012). Response of Aegilops species to drought stress during reproductive stage of development. Func. Plant Biol., 39, 51–59. DOI: 10.1071/FP11171
Sorrentio, G., Muzzaupo, I., Muccilli, S., Timpanaro, N., Russo, M.P., Guardo, M., Rapisarda, P., Romeo, F.V. (2016). New accessions of Italian table olives (Olea europaea): Characterization of genotypes and quality of brined products. Sci. Hortic., 213, 34–41. DOI: 10.1016/j.scienta.2016.10.016
Tognetti, R., d’Andria, R., Lavini, A., Morelli, G. (2006). The effect of deficit irrigation on crop yield and vegetative development of Olea europaea L. (cvs. Frantoio and Leccino). Eur. J. Agron., 25, 356–364. DOI: 10.1016/j.eja.2006.07.003
Download

Published : 2020-06-29


Golmohammadi, M., Sofalian, O., Taheri, M., Ghanbari, A., & Rasoli, V. (2020). CHANGES IN FRUIT YIELD AND PHOTOSYNTHESIS PARAMETERS IN DIFFERENT OLIVE CULTIVARS (Olea europaea L.) UNDER CON-TRASTING WATER REGIMES. Acta Scientiarum Polonorum Hortorum Cultus, 19(3), 135-147. https://doi.org/10.24326/asphc.2020.3.12

Majid Golmohammadi 
Faculty of Agricultur and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran and Horticulture Crops Research Depart-ment, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran  Iran, Islamic Republic of
Omid Sofalian  sofalian@gmail.com
Faculty of Agricultur and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran  Iran, Islamic Republic of
Mehdi Taheri 
Department of Soil and water Research, Zanjan Agricultural and Natural Resources Research and Education Center, AREEO, Zanjan, Iran  Iran, Islamic Republic of
Alireza Ghanbari 
Faculty of Agricultural Sciences University of Mohaghegh Ardabili, Ardabil, Iran  Iran, Islamic Republic of
Valiollah Rasoli 
Horticulture Crops Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran  Iran, Islamic Republic of




 

Articles are made available under the CC BY-NC-ND 4.0 (recognition by authorship, non-commercial use, no dependent works).
The author signs a statement on the originality of the work and the contribution of individuals.

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.