THE EFFECT OF IODINE BIOFORTIFICATION ON SELECTED BIOLOGICAL QUALITY PARAMETERS OF LETTUCE AND RADISH SEEDLINGS

Anna Krzepiłko

University of Life Sciences in Lublin, Poland

Iwona Zych-Wężyk

University of Life Sciences in Lublin, Poland

Jolanta Molas

University of Life Sciences in Lublin, Poland

Barbara Skwaryło-Bednarz

University of Life Sciences in Lublin, Poland

Agata Święciło

University of Life Sciences in Lublin, Poland

Monika Skowrońska

University of Life Sciences in Lublin, Poland



Abstract

Iodine deficiency disorders are one of the serious worldwide public health problem in the world. The need to search for alternative methods of iodine supplementa-tion results from the recommendation of the World Heath Organization and aims to sig-nificantly reduce iodine malnutrition in humans diet. Iodine is not included among essen-tials nutrients for plants, but the plants are able to accumulate it. Seedlings biofortified with iodine can become an alternative source of this element for humans. The aim of the study was to attempt to obtain iodine-fortified lettuce and radish seedlings and to deter-mine the effect of the level of iodine applied in the form of potassium iodide on their bio-logical quality. The following levels of KI were used: 0 (control), 0.075, 0.15, 0.0375, 0.75 and 1.5 mg per Petri dishes. The effect of potassium iodide on the selected parame-ters of their biological quality varied depending on the KI doses and species of plant. The seedlings grown in the presence of KI had a higher iodine content. The results showed that the most appropriate biofortification application rates were 0.075 and 0.15 mg be-cause the enriched seedlings had biological quality parameters similar to the control. Sta-tistically significant differences in the parameters characterizing seedling quality were noted most often in the case of the highest amounts of KI (0.375–1.5 mg). These KI con-centrations reduced seedling’s lenght in radish and lettuce seedling but increased dry weight only in lettuce. A significant increase in ascorbic acid concentration only in the lettuce seedlings was obtained. In comparison with the control, no significant differences in the content of biomass and chlorophyll content were noted in the biofortified seedlings. Thiol group content was decreased in both radish and lettuce, but the antioxidant activity measured by DPPH method only in lettuce seedling extracts.

Keywords:

iodine – enriched vegetables, potassium iodide, sprouts

Aghajanzadeh, T., Hawkesford, M.J., De Kok, L.J. (2014). The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front. Plant Scien., 5, 704. Published online. doi: 10.3389/ fpls.2014.00704.
Allen, L., Bruno, D., Benoit, B., Dary, O., Hurrell, R. (2006). Guidelines on food fortification with micronutrients. World Health Organization. Dept. of Nutrition for Health and Develop-ment. http://www.who.int/iris/handle/10665/43412#sthash.ma6xq439.dpuf.
Anjum, N., Ahmad, I., Mohmood, M., Pacheco, A.C., Duarte, E., Pereira, S., Umar, A., Ahmad, N.A., Khan, M., Prasad, M. (2012). Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ. Exp. Bot., 75, 307–324.
Attieh, J., Kleppinger-Sparace, K.F., Nunes, C., Sparace, S.A., Saini, H.S. (2000) Evidence impli-cating a novel thiol methyltransferase in the detoxification of glucosinolate hydrolysis prod-ucts in Brassica oleracea L. J. Plant, Cell Envir., 23, 2, 165–174.
Bajaj, K.L., Kaur, G. (1981). Spectrophotometric determination of L-ascorbic acid in vegetables and fruits. Analyst., 106, 117–120.
Biliński, T., Bartosz, G., (2006). Ćwiczenia. Podstawy biofizyki, chemia fizyczna, biochemia, enzymologia, biologia komórki. Wyd. UR, Rzeszów, 143–145.
Blasco, B., Rios, J., Cervilla, L., Sánchez-Rodrigez, E., Ruiz, J., Romero, L. (2008). Iodine bio-fortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. App. Biol., 52, 289–299.
Blasco, B., Rios, J., Leyva, R., Melgarejo, R., Constán-Aguilar, C., Sánchez-Rodríguez, E., Ru-bio-Wilhelmi, M., Romero, L., Ruiz, J. (2011). Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regul., 137–143.
Brand-Williams, W., Cuvelier, M., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 28, 25–30.
Caffagni, A., Pecchioni, N., Meriggi, P., Bucci, N., Sabatini, E., Acciarri, N., Ciriaci, T. (2012). Iodine uptake and distribution in horticultural and fruit tree species. Ital. J. Agronom., 7, 229–236.
Dai, J.L., Zhu, Y.G., Zhang, M., Huang, Y.Z. (2004). Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res., 101, 265–276.
Dueñas, M., Hernández, T., Estrella, I., Fernández, D. (2009). Germination as a process to in-crease the polyphenol content and antioxidant activity of lupine seeds (Lupinus angustifolius L). Food Chem., 117, 599–607.
EP 1018883 A1. www.google.com.ar/patents/EP1018883A1?hl=pl&cl=en.
Fuge, R. (2013). Soils and iodine deficiency. In: Essentials of medical geology: revised edition, Selinus, O. (ed.). Springer Science and Business Media, 417– 432.
Gajewski, M., Danicenko, H., Taraseviciene, Z., Szymczak, P., Seroczyńska, A., Radzanowska, J. (2008). Quality characteristics of fresh plant sprouts and after their short-term storage. Vege-tab. Crops Res. Bull., 68, 155–166.
Gruhlke, M., Slusarenko, A. (2012). The biology of reactive sulfur species (RSS). Plant Physiol. Bioch., 59, 98–107.
Higdon, J., Delage, B., Williams, D., Dashwood, R. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res., 55, 224–236.
ISTA (2011). International Rules for Seed Testing. Ver., Radzików.
Itoh, N., Toda, H., Matsuda, M., Negishi, N., Taniguchi, T., Ohsawa, N. (2009). Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emisAghajanzadeh, T., Hawkesford, M.J., De Kok, L.J. (2014). The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front. Plant Scien., 5, 704. Published online. doi: 10.3389/ fpls.2014.00704.
Allen, L., Bruno, D., Benoit, B., Dary, O., Hurrell, R. (2006). Guidelines on food fortification with micronutrients. World Health Organization. Dept. of Nutrition for Health and Develop-ment. http://www.who.int/iris/handle/10665/43412#sthash.ma6xq439.dpuf.
Anjum, N., Ahmad, I., Mohmood, M., Pacheco, A.C., Duarte, E., Pereira, S., Umar, A., Ahmad, N.A., Khan, M., Prasad, M. (2012). Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ. Exp. Bot., 75, 307–324.
Attieh, J., Kleppinger-Sparace, K.F., Nunes, C., Sparace, S.A., Saini, H.S. (2000) Evidence impli-cating a novel thiol methyltransferase in the detoxification of glucosinolate hydrolysis prod-ucts in Brassica oleracea L. J. Plant, Cell Envir., 23, 2, 165–174.
Bajaj, K.L., Kaur, G. (1981). Spectrophotometric determination of L-ascorbic acid in vegetables and fruits. Analyst., 106, 117–120.
Biliński, T., Bartosz, G., (2006). Ćwiczenia. Podstawy biofizyki, chemia fizyczna, biochemia, enzymologia, biologia komórki. Wyd. UR, Rzeszów, 143–145.
Blasco, B., Rios, J., Cervilla, L., Sánchez-Rodrigez, E., Ruiz, J., Romero, L. (2008). Iodine bio-fortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. App. Biol., 52, 289–299.
Blasco, B., Rios, J., Leyva, R., Melgarejo, R., Constán-Aguilar, C., Sánchez-Rodríguez, E., Ru-bio-Wilhelmi, M., Romero, L., Ruiz, J. (2011). Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regul., 137–143.
Brand-Williams, W., Cuvelier, M., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 28, 25–30.
Caffagni, A., Pecchioni, N., Meriggi, P., Bucci, N., Sabatini, E., Acciarri, N., Ciriaci, T. (2012). Iodine uptake and distribution in horticultural and fruit tree species. Ital. J. Agronom., 7, 229–236.
Dai, J.L., Zhu, Y.G., Zhang, M., Huang, Y.Z. (2004). Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res., 101, 265–276.
Dueñas, M., Hernández, T., Estrella, I., Fernández, D. (2009). Germination as a process to in-crease the polyphenol content and antioxidant activity of lupine seeds (Lupinus angustifolius L). Food Chem., 117, 599–607.
EP 1018883 A1. www.google.com.ar/patents/EP1018883A1?hl=pl&cl=en.
Fuge, R. (2013). Soils and iodine deficiency. In: Essentials of medical geology: revised edition, Selinus, O. (ed.). Springer Science and Business Media, 417– 432.
Gajewski, M., Danicenko, H., Taraseviciene, Z., Szymczak, P., Seroczyńska, A., Radzanowska, J. (2008). Quality characteristics of fresh plant sprouts and after their short-term storage. Vege-tab. Crops Res. Bull., 68, 155–166.
Gruhlke, M., Slusarenko, A. (2012). The biology of reactive sulfur species (RSS). Plant Physiol. Bioch., 59, 98–107.
Higdon, J., Delage, B., Williams, D., Dashwood, R. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res., 55, 224–236.
ISTA (2011). International Rules for Seed Testing. Ver., Radzików.
Itoh, N., Toda, H., Matsuda, M., Negishi, N., Taniguchi, T., Ohsawa, N. (2009). Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emisAghajanzadeh, T., Hawkesford, M.J., De Kok, L.J. (2014). The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front. Plant Scien., 5, 704. Published online. doi: 10.3389/ fpls.2014.00704.
Allen, L., Bruno, D., Benoit, B., Dary, O., Hurrell, R. (2006). Guidelines on food fortification with micronutrients. World Health Organization. Dept. of Nutrition for Health and Develop-ment. http://www.who.int/iris/handle/10665/43412#sthash.ma6xq439.dpuf.
Anjum, N., Ahmad, I., Mohmood, M., Pacheco, A.C., Duarte, E., Pereira, S., Umar, A., Ahmad, N.A., Khan, M., Prasad, M. (2012). Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ. Exp. Bot., 75, 307–324.
Attieh, J., Kleppinger-Sparace, K.F., Nunes, C., Sparace, S.A., Saini, H.S. (2000) Evidence impli-cating a novel thiol methyltransferase in the detoxification of glucosinolate hydrolysis prod-ucts in Brassica oleracea L. J. Plant, Cell Envir., 23, 2, 165–174.
Bajaj, K.L., Kaur, G. (1981). Spectrophotometric determination of L-ascorbic acid in vegetables and fruits. Analyst., 106, 117–120.
Biliński, T., Bartosz, G., (2006). Ćwiczenia. Podstawy biofizyki, chemia fizyczna, biochemia, enzymologia, biologia komórki. Wyd. UR, Rzeszów, 143–145.
Blasco, B., Rios, J., Cervilla, L., Sánchez-Rodrigez, E., Ruiz, J., Romero, L. (2008). Iodine bio-fortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. App. Biol., 52, 289–299.
Blasco, B., Rios, J., Leyva, R., Melgarejo, R., Constán-Aguilar, C., Sánchez-Rodríguez, E., Ru-bio-Wilhelmi, M., Romero, L., Ruiz, J. (2011). Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regul., 137–143.
Brand-Williams, W., Cuvelier, M., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 28, 25–30.
Caffagni, A., Pecchioni, N., Meriggi, P., Bucci, N., Sabatini, E., Acciarri, N., Ciriaci, T. (2012). Iodine uptake and distribution in horticultural and fruit tree species. Ital. J. Agronom., 7, 229–236.
Dai, J.L., Zhu, Y.G., Zhang, M., Huang, Y.Z. (2004). Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res., 101, 265–276.
Dueñas, M., Hernández, T., Estrella, I., Fernández, D. (2009). Germination as a process to in-crease the polyphenol content and antioxidant activity of lupine seeds (Lupinus angustifolius L). Food Chem., 117, 599–607.
EP 1018883 A1. www.google.com.ar/patents/EP1018883A1?hl=pl&cl=en.
Fuge, R. (2013). Soils and iodine deficiency. In: Essentials of medical geology: revised edition, Selinus, O. (ed.). Springer Science and Business Media, 417– 432.
Gajewski, M., Danicenko, H., Taraseviciene, Z., Szymczak, P., Seroczyńska, A., Radzanowska, J. (2008). Quality characteristics of fresh plant sprouts and after their short-term storage. Vege-tab. Crops Res. Bull., 68, 155–166.
Gruhlke, M., Slusarenko, A. (2012). The biology of reactive sulfur species (RSS). Plant Physiol. Bioch., 59, 98–107.
Higdon, J., Delage, B., Williams, D., Dashwood, R. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res., 55, 224–236.
ISTA (2011). International Rules for Seed Testing. Ver., Radzików.
Itoh, N., Toda, H., Matsuda, M., Negishi, N., Taniguchi, T., Ohsawa, N. (2009). Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish). BMC Plant Biol., 9, 116–126.
Kiferle, C., Gonzali, S., Holwerda, H., Ibaceta, R., Perata, P. (2013). Tomato fruits: a good target for iodine biofortification. Front. Plant Sci., 4, 205, 1–10 .
Landini, M., Gonzali, S., Perata, P. (2011). Iodine biofortification in tomato. J. Plant Nutr. Soil Sci., 174, 480–486.
Mackowiak, C., Grossl, P., Cook, K. (2005). Iodine toxicity in a plant-solution system with and without humic acid. Plant Soil, 269, 141–150.
Ni, Z., Kim, E.-D., Chen, Z.J. (2009). Chlorophyll and starch assays Protocol Exchange. doi:10.1038/nprot.2009.12.
Rice-Evans, C., Miller, N., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med., 20, 933–956.
Samotyja, U., Zdziebłowski, T., Szlachta, M., Małecka, M. (2007). Przeciwutleniające właściwo-ści ekstraktów z kiełków roślin.. Żyw. Nauka Tech. Jakość, 5, 122–128.
Sasikala, S., Kannan, E. (2014). Nutri- cognosy in cancer. Int. J. Pharm., 6, 23–29.
Smoleń, S., Ledwożyw, I., Strzetelski, P., Sady, W., Rożek, S. (2009). Wstępna ocena wpływu nawożenia i dokarmiania dolistnego jodem na efektywność biofortyfikacji marchwi w jod oraz jej skład mineralny. Ochr. Środ. Zas. Nat., 40, 313–320.
Smoleń, S., Sady, W. (2011). Influence of iodine fertilization and soil application of sucrose on the effectiveness of iodine biofortification, yield, nitrogen metabolism and biological quality of spinach. Acta Sci. Pol. Hortorum Cultus, 10, 51–63.
Smoleń, S., Strzetelski, P., Rożek, S., Ledwożyw-Smoleń, I. (2011a). Comparison of iodine de-termination in spinach using 2% CH3COOH and TMAH. Acta Sci. Pol. Hortorum Cultus, 10, 29–38.
Smoleń, S., Wierzbińska, J., Liszka-Skoczylas, M., Rakoczy, R. (2011b). Wpływ formy jodu na plonowanie oraz jakość owoców pomidora uprawianego w systemie hydroponicznym CKP. Ochr. Środ. Zas. Nat., 48, 59–66.
Strzetelski, P., Smoleń, S., Rożek, S., Sady, W. (2010). The effect of differentiated fertilization and foliar application of iodine on yielding and antioxidant properties in radish (Raphanus sa-tivus L.) plants. Ecol. Chem. Engin. A., 17, 1189–1195.
Szybiński, Z. (2012). Work of the polish council for control of iodine deficiency disorders, and the model of iodine prophylaxis in Poland. Endokrynol. Pol., 63, 156–160.
Thaiponga, K., Boonprakoba, U., Crosbyb, K., Cisneros-Zevallosc, L., Byrnec, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal., 19, 669–675.
Untoro, J., Timmer, A., Schultink, W. (2010). The challenges of iodine supplementation: a public health programme perspective. Best Pract. Res. Clin. Endocrinol. Metab., 24, 89–99.
Weng, H.X., Hong, C.L., Xia, T.H., Bao, L.T., Liu, H.P., Li, D.W. (2013). Iodine biofortification of vegetable plants – an innovative method for iodine supplementation. Chin. Sci. Bull., 17, 2066–2072.
White, P., Broadley, M. (2005). Biofortifying crops with essential mineral elements. Trends Plant Sci., 10, 586–593.
Zieliński, H., Piskuła, M.K, Michalska, A., Kozłowska, H. (2007). Antioxidant capacity and its components of cruciferous sprouts. Pol. J. Food Nutr. Sci., 57, 315–321.
Zhu, Y., Huang, Y., Hu, Y., Liu, Y. (2003). Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Envi-ron. Int., 29, 33–37.
Zimmermann, M.B. (2011). The role of iodine in human growth and development. Semin. Cell Dev. Biol., 22, 645–652.
Download

Published
2016-06-30



Anna Krzepiłko 
University of Life Sciences in Lublin, Poland
Iwona Zych-Wężyk 
University of Life Sciences in Lublin, Poland
Jolanta Molas 
University of Life Sciences in Lublin, Poland
Barbara Skwaryło-Bednarz 
University of Life Sciences in Lublin, Poland
Agata Święciło 
University of Life Sciences in Lublin, Poland
Monika Skowrońska 
University of Life Sciences in Lublin, Poland



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)