GENE POOL VARIATION OF Fragaria × ananassa (Duch.) AND Fragaria vesca (L.)

Ewa Dziadczyk

Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University

Piotr Dziadczyk

Rzeszów University of Technology, Department of Biochemistry and Biotechnology

Mirosław Tyrka

Rzeszów University of Technology, Department of Biochemistry and Biotechnology



Abstract

Gene pool variation of twenty varieties and breeding clones of Fragaria × ananassa, nine varieties and breeding lines of Fragaria vesca, and one new interspecific
hybrid designated Fragaria × anavesca was analysed with three DNA marker systems. ISSR reactions with four primers produced 45 polymorphic markers. Similarly, RAPD analyses with three primers produced 26 markers and SSR method with three primer pairs revealed 28 different alleles. The total number of 99 polymorphic markers allowed distinguishing clearly a group of F. × ananassa genotypes from that of F. vesca genotypes with F. × anavesca in between of these two. RAPD markers proved to be more informative than ISSRs as 3 of 26 were specific to F. × ananassa only and one exclusively to F. vesca and F. × anavesca. Thus, the presumed hybrid nature of F. × anavesca was effectively confirmed by RAPD markers. Especially important was the 1100bp long PCR product of the B104 primer present in all F. vesca genotypes as well as in F. × anavesca but absent in F. × ananassa. Presence of F. vesca DNA in the hybrid F. × anavesca was additionally corroborated by the 223bp product of the UDF017 primer pair and the 185bp-long band generated with the UDF006 primer pair.

Keywords:

Fragaria, strawberry, gene pool, interspecific hybrid

Baturin, S.O. (2009). Seed germination of Fragaria vesca L. from atypical ecotypes of West Siberia. Contemp. Probl. Ecol., 2(6), 556–559.
Bringhurst, R.S. (1990). Cytogenetics and evolution in American Fragaria. HortSci., 25, 879–881.
Cekic, C., Battey, N.H., Wilkinson, M.J. (2001). The potential of ISSR-PCR primer-pair combinations for genetic linkeage analysis using seasonal flowering locus in Fragaria as a model. Theor. Appl. Genet., 103, 540–546.
Chalhoub, B.A., Thibault, S., Laucou, V., Rameau, C., Höfte, H., Cousin, R. (1997). Silver staining and recovery of AFLP™ amplification products on large denaturing polyacrylamide gels. BioTech., 22, 216–220.
Cipriani, G., Testolin, R. (2004). Isolation a characterisation of microsatellite loci in Fragaria. Mol. Ecol. Notes, 4, 366–368.
Cornelius, C., Estrella, N., Franz, H., Menzel, A. (2013). Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. Plant Biol., 1, 57–69.
Darrow, G.M. (1966). The strawberry. Holt, Rinehart and Winston, New York.
Davis, T.M., Yu, H. (1997). A linkage map of the diploid strawberry, Fragaria vesca. J. Hered., 88, 215–221.
Goulden, C.H. (1939). Problems in plant selection. In: Proceedings of the Seventh International Genetics Congress. Cambridge Univ. Press, pp. 132–133.
https://www.ars.usda.gov/SP2UserFiles/Place/53581500/catalogs/fracult.html
Li, J., Koski, M.H., Ashman, T.L. (2012). Functional characterization of gynodioecy in Fragaria vesca ssp. bracteata (Rosaceae). Ann. Bot., 109(3), 545–52.
Luby, J.J., Hancock, J.F., Dale, A., Serce, S. (2008). Reconstructing Fragaria × ananassa utilizing wild F. virginiana and F. chiloensis: inheritance of winter injury, photoperiod sensitivity, fruit size, female fertility and disease resistance in hybrid progeny. Euphytica, 163,57–65.
Lynch, M., Milligan, B.G. (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol., 3, 91–99.
Marta, A.E., Camadro, E.L., Diaz-Ricci, J.C., Castagnaro, A.P. (2004). Breeding barriers between the cultivated strawberry, Fragaria × ananassa, and related wild germplasm. Euphytica, 136, 139–150.
Milligan, B.G. (1992). Plant DNA isolation. In: Molecular analysis of populations: a practical approach. IRL Press, Oxford, UK, pp. 59–88.
Riek De, J., Calsyn, E., Everaert, I., Bockstaele Van, E., Loose De, M. (2001). AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor. Appl. Genet., 103, 1254–1265.
Rohlf, F.J. (2001). NTSYS-pc numerical taxonomy and multivariate analysis system. Ver. 2.10q. Exeter Publ. Ltd., Setauket, N.Y.
Russell, J., Booth, A., Fuller, J., Harrower, B., Hedley, P., Machray, G., Powell, W. (2004). A comparison of sequence-based polymorphism and haplotype content in transcribed and regions of barley genome. Genome, 47, 389–398.
Sargent, D.J., Davis, T.M., Tobutt, K.R., Wilkinson, M.J., Battey, N.H., Simpson, D.W. (2004). A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor. Appl. Genet., 109(7), 1385–1391.
Shulaev, V., Sargent, D., Crowhurst, R.N., Mockler, T.C., Folkerts, O., Delcher, A.L., Jaiswal, P., Mockaitis, K., Liston, A., Mane, S.P., Burns, P., Davis, T., Slovin, J., Bassil, N., Hellens, R.P., Evans, C., Harkins, T., Kodira, C., Desany, B., Crasta, O.R. (2011). The genome of woodland strawberry. Nat. Genet., 43, 109–116.
Staudt, G. (1961). Die Entstehung Und Geschichte der grossfruchtigen Gartenerdbeeren Fragaria × ananassa Duch. Der Zuchter (TAG), 31(5), 212–218.
Yanagi, T., Hummer, K.E., Iwata, T., Sone, K., Nathewet, P., Takamura, T. (2010). Aneuploid strawberry (2n = 8x + 2 = 58) was developed from homozygous unreduced gamete (8x) produced by second division restitution in pollen. Sci. Hort., 125, 123–128.
Vekemans, X., Beauwens, T., Lemaire, M., Roldan-Ruiz, I. (2002). Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol. Ecol., 11, 139–151.
Weber, J.L. (1990). Informativeness of human (dC-dA)n(dG-dT)n polymorphisms. Genomics, 7, 524–530.
Williams, F.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res., 18(22), 6531–6535.
Download

Published
2015-04-30



Ewa Dziadczyk 
Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University
Piotr Dziadczyk 
Rzeszów University of Technology, Department of Biochemistry and Biotechnology
Mirosław Tyrka 
Rzeszów University of Technology, Department of Biochemistry and Biotechnology



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.