Skip to main navigation menu Skip to main content Skip to site footer

Vol. 14 No. 4 (2015)

Articles

THE EFFECT OF SILICON ON NECTAR AND POLLEN PRODUCTION IN Hosta Tratt. ‘Krossa Regal’

Submitted: November 17, 2020
Published: 2015-08-31

Abstract

Recently, the importance of silicon (Si) has been demonstrated for many plant physiological processes. The recognized function of Si is to help plants to overcome multiple
biotic and abiotic stresses, e.g. disease or pests, low temperature, water deficit, salinity or heavy metals. Silicon advantageously impact on plant development and may improve
the quality of ornamental plants. Hosta is an ornamental perennial, that flowers can serve as a source of nectar and pollen for floral visitors. The effect of artificial silicon (Si)
supply on flowering, nectar production and pollen traits in Hosta Tratt. ‘Krossa Regal’ was studied. A foliar spraying of 0, 120, 180 and 240 mg Si·dm–3 was applied with water
solutions of Actisil Hydro Plus, containing silicon in the form of H4SiO4. Silicon supply in concentration of 180 and 240 mg Si·dm-3 affected the morphometric traits of the flower
(perianth width and floral tube length), but not the number of flowers produced per inflorescence. The silicon supply in concentration of 180 and 240 mg Si·dm-3 resulted in the
increase of nectar production and in sugars excess in floral nectar. Treatments in concentration of 180 and 240 mg Si·dm-3 positively influence both pollen production and pollen
viability. Presumably, most of these results can be explained through the effect of the Si on metabolism enhancement, e.g. by water balance regulation and increase in photosynthetic
efficiency.

References

Adamiak, J. Hetman, J. (2006). Dolistna aplikacja tytanu w uprawie okulantów róż odmiany ‘Flamingo’. Zesz. Probl. Nauk Roln., 510, 25–30.
Ahmad, S.T., Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and 407 osmotic adjustment of wheat under drought stress. Czech J. Genet. Plant Breed., 47, 17–27.
Cruden, R.W. (2000). Pollen grains: why so many? Plant Syst. Evol., 222,143–165.
Currie, H.A., Perry, C.C. (2007). Silica in plants: biological, biochemical and chemical studies. Ann. Bot., 100(7), 1383–1389.
Denisow, B. (2006). The biological value of pollen of some black currant cultivars (Ribes nigrum L.) Acta Agrobot., 59(1), 147–154.
Denisow, B. (2009a). Pollen production, flowering and insect visits on Euphorbia cyparissias L. and Euphorbia virgultosa Klok. J. Apic. Res., 48(1), 50–59.
Denisow, B. (2009b). Factors determining diurnal dynamics of blooming of chosen plants species. Acta Agrobot., 62(1), 83–89.
Denisow, B. (2011). Pollen production of selected ruderal plant species in the Lublin area. Rozprawy Nauk. UP w Lublinie, 351: pp 86.
Denisow, B., Strzałkowska-Abramek, M., Bożek, M., Jeżak, A. (2014). Early spring nectar and pollen and insect visitor behavior in two Corydalis species (Papaveraceae). J. Apicult. Sci.,
58(1), 93–102
Dębicz, R., Wróblewska, K. (2011). The effect of silicon foliar application on the development of seasonal ornamental plants. Part I: Sanvitalia speciosa ‘Sunbini’, Verbena ‘Patio Blue’ and
Portulaca umbraticola ‘Duna Red’. Acta Agrobot., 64(4), 99–106.
Gardener, M.C., Gillman, M.P. (2001). The effects of soil fertilizer on amino acids in the floral nectar of corncockle, Agrostemma githago (Caryophyllaceae). Oikos, 92(1), 101–106.
Hermans, C., Hammond, J.P., White, P.J, Verbruggen, N. (2007). How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci., 11(12), 610–617.
Jabłoński, B. (2002). Notes on the method to investigate nectar secretion rate in flowers. J. Apic. Sci., 46(2), 117–125.
Kamenidou, S., Cavins, T.J., Marek, S. (2008). Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. Hort. Sci., 43(1), 236–239.
Kamenidou, S., Cavins, T.J., Marek, S. (2009). Evaluation of silicon as a nutritional supplement for green-house zinnia production. Sci. Hort., 119, 297–301.
Kamenidou, S., Cavins, T.J., Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Sci. Hort., 123,
390–394.
Kaya, C., Tuna, L., Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr., 29, 1469–1480.
Kazemi, M., Gholami, M., Asadi, M., Aghdasi, S. (2012). Efficiency of silicon, nickel and acetylsalicylic acid reduced senescence and extended vase life of cut rose flowers. Trends App. Sci.
Res., 7, 590–595.
Lau, T.C., Stephenson, A.G. (1993). Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am. J. Bot., 80(7), 763–768.
Ma, J.F., Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam.
Marschner, H., Oberle, H., Cakmak, I., Römheld, V. (1990). Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply.
Plant Soil, 124, 211–219.
Mateos-Naranjo, E., Andrades-Moreno, L., Davy, A.J. (2013). Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol. Bioch., 63,
115–121.
Miyake, Y., Takahashi, E. (1978). Silicon deficiency of tomato plant. Soil Sci. Plant Nutr., 24, 175–189.
Miyake, Y., Takahashi, E. (1983). Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci. Plant Nutr., 29, 71–83.
Pacini, E., Nepi, M. (2007). Nectar production and presentation. In: Nectaries and nectar, S.W, Nicolson., M., Nepi, E., Pacini (eds). Dordrecht, Springer, 167–214.
Petanidou, T., Goethals, V., Smets, E. (1999). The effect of nutrient and water availability on nectar secretion and nectary structure of the dominant Labiatae species of Phrygana. Syst.
Geogr. Pl., 68, 233–244.
Ross, H. (1982). A foolproof method of rapidly propagating hostas. Amer. Hosta Soc. Bull., 13, 51–54.
Rubinowska, K., Pogroszewska, E., Laskowska, H., Szot, P., Zdybel, A., Stasiak, A., Kozak, D. (2014). The subswequent effect of silicon on physiological and biochemical parameters of Polygonatum multiflorum (L.) All. ‘Variegatum’ cut shoots. Acta Sci. Pol. Hortorum Cultus 13(1), 167–178.
Sacała, E. (2009). Role of silicon in plant resistance to water stress. J. Elementol., 14(3), 619–630.
Savvas, D., Manos, G., Kotsiras, A., Souvaliotis, S. (2002). Effects of silicon and nutrientinduced salinity on yield, flower quality and nutrient uptake of gerbera grown in a closed hydroponic
system. J. Appl. Bot., 76, 153–158.
Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A.E., Li, J. (2010). Silicon effects on photosynthesis and 490 antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation.
J. Plant Physiol., 167, 1248–1252.
Silva, O.N, Lobato, A.K.S, Martins Filho, A.P., Lemos, R.P., Pinho, J.M., Medeiros, M., Cardoso, M.S., Ávila, F.W., et al. (2012). Silicon contributes to increase chlorophyll and this response
is modulated by leaf water potential in two tomato cultivars exposed to water deficiency. Plant Soil Environ., 58, 481–486.
Stpiczyńska, M., Nepi, M. (2006). Ecophysiological aspects of nectar reabsorption. Acta Agrobot., 59(1), 61–69.
Stanisz. A. (2007). Przystępny kurs statystyki z zastosowaniem Statistica na przykładach z medycyny. Statsoft Polska, Kraków, 359 pp.
Szymańska, M. (2012). Odżywianie mineralne roślin. In: Fizjologia roślin, J., Kopcewicz, S., Lewak (eds). Wyd. Nauk. PWN, Warszawa, pp 811.
Suzuki, K., Dohzono, I., Hiei, K., Fukuda, Y. (2002). Pollination effectiveness of three bumblebee species on flowers of Hosta sieboldiana (Liliaceae) and its relations to floral structure and
pollinator size. Plant Spec. Biol., 17, 139–146.
Wróblewska, K., Dębicz, R. (2011). The effect of silicon foliar application on the development of season ornamental plants. Part II: Argyranthemum frutescens ‘Blazer Rose’, Xerochrysum
bracteatum ‘Gold’, Osteospermum ecklonis ‘Grande Pink Bush’ and Gaura lindheimeri ‘Corinas Choice’. Acta Agrobot., 64, 4, 107–114.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.