INITIATION AND STABILIZATION OF A TRUMPET CREEPER (Campsis radicans (L.) Seem.) TISSUE CULTURES

Marek Dąbski

University of Life Sciences in Lublin

Marzena Parzymies

University of Life Sciences in Lublin

Danuta Kozak

University of Life Sciences in Lublin

Katarzyna Rubinowska

University of Life Sciences in Lublin

Krzysztof Jóźwik

University of Life Sciences in Lublin



Abstract

A trumpet creeper (Campsis radicans) is a very decorative shrub propagated vegetatively through cuttings. So far, there is no available information on micropropagation of this beautiful species. Determination of the optimal sterilization methods as well as types and concentrations of plant growth regulators as medium constituents is one of the most important factors of successful micropropagation. With the aim of optimization of in vitro initiation and multiplication of C. radicans, the effect of different methods of disinfection and terms of explants isolation on contamination rate of cultures as well as the influence of cytokinins on growth and branching of shoots was studied. The cytokinins used in the experiments were: benzyladenine (BA), isopentenyl adenine (2-iP) and kinetin (KIN). The obtained results show that contamination rate is a very significant problem to overcome in order to initiate tissue cultures of C. radicans. The best results were observed when explants were excised in spring (May), shortly after the vegetation had started (88% contamination rate). Soaking initial the fragments in a mixture solution of Topsin M 500SC and streptomycine for 12 hours decreased the contamination rate of explants from 100 to 94%. The shoot tips are more suitable to establish the tissue culture of a trumpet creeper, in comparison to nodes with axillary buds. The multiplication rate after two subcultures was 2.6–3.7 for shoot tips (depending on the media) and 1.9–2.1 for nodes. The cytokinins used in the experiment had a significant influence on multiplication rate of C. radicans. The highest number of good quality shoots was obtained on the media supplemented with KIN in concentration of 2 mg·dm-3.

Keywords:

cytokinins, disinfection, explant type, micropropagation, tissue culture

Adamus A., 1996. Podstawowe wiadomości o kulturach in vitro. In: Zastosowanie metod biotechnologicznych w hodowli roślin, B. Michalik (ed.). Drukol S.C., Kraków, 5–15.
Bach A., 2004. Produkcja roślin in vitro na świecie. Rozmnażanie wegetatywne. In: Biotechnologia roślin, S. Malepszy (ed.). PWN Warszawa, 261–272.
Bach A., Kraus D., Grabarczyk D., 1996. Mikrorozmnażanie pigwowca japońskiego (Chaenomeles japonica Lindl.). Zesz. Nauk. ATR Bydgoszcz, Rolnictwo 197(39), 115–121.
Ban I., 2011. On assessing the effect of rooting stimulators and substrate of the roots’ development and growth of Buddleia davidii and Campsis radicans shoots. J. Hort. Forest. Biotech. 15(3), 182–187.
Beeler J.E., Armel G.R., Brosnan J.T., Vargas J.J., Klingeman W.E., Koepke-Hill R.M., Bates G.E., Kopsell D.A., Flanagan P.C., 2012. Trumpet creeper control with various Indole-3-acetic acid mimics and diflufenzopyr. HortTech. 22(5), 677–681.
Bertin R.I., 1982. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot. 69, 122–134.
Bertin R.I., Barnes C., Guttman S.I., 1989. Self-sterility and cryptic self-sterility in Campsis radicans (Bignoniaceae). Bot. Gazette 150, 397–403.
Bhatt I.D., Dhar U., 2004. Factors controlling micropropagation of Myrica esculenta buch. – Ham. ex D. Don: a high value wild edible of Kumaun Himalaya. Afr. J. Biotechnol. 3(10), 534–540.
Carelli B.P., Echeverrigaray S., 2002. An improved system for the in vitro propagation of rose cultivars. Sci. Hort. 92, 69–74.
Chachalis D., Reddy K.N., 2000. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci. 48, 212–216.
Cheng Z.-M., Osburn L., 2005. Micropropagation of two Lonicera species for genetic engineering for sterility. SNA Research Conference 50, 398–400.
Dąbski M., Parzymies M., 2006. Wpływ cytokinin na namnażanie powojnika całolistnego (Clematis integrifolia L.) in vitro. Zesz. Probl. Post. Nauk Rol. 510, 119–125.
Debergh P., Aitken-Christie J., Cohen D., Grout B., von Arnold S., Zimmerman R., Ziv M., 1992. Recorsideration of the term “vitrification” as used in micropropagation. Plant Cell Tiss. Org. Cult. 30, 135–140.
Edwards J.T., Oliver L.R., 2004. Emergence and growth of trumpet creeper (Campsis radicans) as affected by rootstock size and planting depth. Weed Technol. 18, 816–819.
Evers P., Haanstra L., Wermeer E., van Eeeden S., 1996. Influence of reverse change on micropropagation of Quercus suber. Plant Tiss. Cult. Biotech. 2, 148–154.
Giri C.C., Shyamkumar B., Anjaneyulu C., 2004. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18, 115–135.
Hashem F.A., 2007. Free radical scavenging activity of the flavonoids isolated from Tecoma radicans. IJBAS 3(1), 49–53.
Horn W.A.H., 1992. Micropropagation of rose (Rosa L.). Biotechnology in Agriculture and Forestry 20, 320–342.
Hosoki T., Kobayakawa H., Ohta K., 2003. Micropropagation of chocolate cosmos (Cosmos atrosanguineus) by repeated division of nodes/axillary shoots and adventitious shoots from microshoots. Acta Hort. 625, 261–265.
Huang L.C., Huang B.L., Murashige T., 1998. A micropropagation protocol for Cinnamomum camphora. In Vitro Cell. Dev. Biol. Plant 34, 141–146.
Ibrahim R., Debergh P.C., 2000. Improvement of adventitious bud formation and plantlet regeneration from in vitro leaflet explants of roses (Rosa hybrida L). Acta Hort. 520, 271–275.
Kim M-S., Klopfenstein N.B., Cregg B.M., 1998. In vitro and ex vitro rooting of micropropagated shoots using three green ash (Fraxinus pennsylvanica) clones. New Forests 16, 43–57.
Kołodziejska-Degórska I., Zych M., 2006. Bees substitute birds pollination of ornitogamous climber Campsis radicans (L.) Seem. in Poland. Acta Soc. Bot. Pol. 75(1), 79–85.
Lu M.-C., 2002. Micropropagation of Morus latifolia Poilet using axillary buds from mature trees. Sci. Hort. 96, 329–341.
Lu M-C., 2005. Micropropagation of Vitis thunbergii Sieb. et Zucc., a medicinal herb, through high-frequency shoot tip culture. Sci. Hort. 107, 64–69.
Marcinek B., Hetman J., Witek M., 2004. Wpływ regulatorów wzrostu na namnażanie in vitro bluszcza pospolitego (Hedera helix L.) odmiany ‘Dark Pittsburgh’ i ‘Kolibri’. Folia Univ. Agric. Stetin. Agricult. 236(94), 119–124.
Mereti M., Grigoriadou K., Nanos G.D., 2002. Micropropagation of the strawberry tree, Arbutus unedo L. Sci. Hort. 93, 143–148.
Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–479.
Nesterowicz S., Kulpa D., Moder K., Kurek J., 2006. Micropropagation of an old specimen of common lilac (Syringa vulgaris L.) from the dendrological garden at Przelewice. Acta Sci. Pol., Hortorum Cultus 5(1), 27–35.
Nobre J., Santos C., Romano A., 2000. Micropropagation of the Mediterranean species Viburnum tinus. Plant Cell Tiss. Org. Cult. 60, 75–78.
Palacios N., Christou P., Leech M.J., 2002. Regeneration of Lonicera tatarica plants via adventitious organogenesis from cultured stem explants. Plant Cell Rep. 20, 808–813.
Parzymies M., Dąbski M., 2012. The effect of cytokinin types and their concentration on in vitro multiplication of Clematis viticella (L.) and Clematis integrifolia ‘Petit Faucon’. Acta Sci. Pol., Hortorum Cultus 11(1), 81–91.
Pati P.K., Rath S.P., Sharma M., Sood A., Ahuja P.S., 2006. In vitro propagation of rose – a review. Biotech. Adv. 24, 94–114.
Pawłowska B., 2005. Wpływ cytokinin na rozwój pąków kątowych róży pnącej ‘New Dawn’ w kulturach in vitro. Zesz. Probl. Post. Nauk Rol. 504, 499–505.
Podwyszyńska M., Puławska J., Piotrowska-Seget Z., Kaźmierak B., 2003. Otrzymywanie czystych kultur in vitro hortensji ogrodowej. Folia Hort. Suppl. 1, 215–217.
Polish Nurserymen Association (Związek Szkółkarzy Polskich). http://www.zszp.pl.
Preece J.E., Ledbetter D.I., 2003. The influence of thidiazuron on in vitro shoot proliferation of oakleaf hydrangea (Hydranga quercifolia Bartr.). Acta Hort. 625, 233–236.
Rai R., Misra K.K., 2005. Micropropagation of karonda (Carissa carandas) through shoot multiplication. Sci. Hort. 103, 227–232.
Sahoo Y., Chand P.K., 1998. Micropropagation of Vitex negundo L., a woody aromatic medicinal shrub, through high-frequency axillary shoot proliferation. Plant Cell Rep. 18, 301–307.
Salwa S. Sakr, Saad S. Melad, M.A. El-Shamy, Asmaa E. Abd Elhavez, 2011. Propagation of Cerbera odollam plant by using tissue culture technique. J. Hort. Sci. Ornament. Plants 3(3), 276–282.
Sansberro P., Rey H., Mroginski L., 2003. In vitro plantlet regeneration of Schinopsis balansae (Anacardiaceae). Trees 17, 542–546.
Sansberro P., Rey H., Mroginski L., Collavino M., 1999. In vitro plant regeneration of Ilex paraguariensis (aquifoliaceae). In Vitro Cel. Dev. Biol. Plant. 35(5), 401–402.
Santos C.V., Brito G., Pinto G., Fonseca H.M.A.C., 2003. In vitro plantlet regeneration of Olea europaea ssp. maderensis. Sci. Hort. 97, 83–87.
Schoene G., Yeager T., 2005. Micropropagation of sweet viburnum (Viburnum odoratissimum). Plant Cell Tiss. Org. Cult. 83, 271–277.
Shim K.-K., Ha Y.-M., 1997. New gold leaf cultivar of Forsythia koreana (‘Suwon Gold’) and its mass propagation in vitro. Acta Hort. 107, 64–69.
Sujatha M., Makkar H.P.S., Becker K., 2005. Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Reg. 47, 83–90.
USDA, 2004. Trumpet Creeper Campsis radicans (L.) Seem. ex Bureau. Plant Guide. United States Department of Agriculture, National Resources Conservation Service, National Plant Data Center. http://plant-materials.nrcs.usda.gov/intranet/pfs.html.
Vengadesan G., Ganapathi A., Amutha S., Selvaraj N., 2002. In vitro propagation of Acacia species – a review. Plant Sci. 163, 663–671.
Wei Guo, Jing Li, Qing Li, Chung Xiu D., Hui Jin F., 2007. Study on tissue culture of Campsis radicans. J. Shandong Forest. Sci. Technol. 1, 36–37. (In Chinese with English abstract).
Download

Published
2014-02-28



Marek Dąbski 
University of Life Sciences in Lublin
Marzena Parzymies 
University of Life Sciences in Lublin
Danuta Kozak 
University of Life Sciences in Lublin
Katarzyna Rubinowska 
University of Life Sciences in Lublin
Krzysztof Jóźwik 
University of Life Sciences in Lublin



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

<< < 1 2 3 4 > >>