Szymon Zubek

Jagiellonian University, Kraków

Janusz Błaszkowski

West Pomeranian University of Technology, Szczecin

Katarzyna Seidler-Łożykowska

Institute of Natural Fibres and Medicinal Plants, Poznań

Wojciech Bąba

Jagiellonian University, Kraków

Piotr Mleczko

Jagiellonian University, Kraków


The presence of arbuscular mycorrhizal fungi (Glomeromycota, AMF) in soils may be crucial for sustainable agriculture. Although AMF impact on the performance and accumulation of therapeutic compounds of several medicinal plant species has been well documented, the investigations on the influence of medicinal plants being cultivated on AMF have been insufficiently studied. The effect of three-year monocultures of mycorrhizal (Hypericum perforatum, Levisticum officinale, Mentha × citrata subsp. citrata and Thymus vulgaris) and non-mycorrhizal (Chelidonium majus) medicinal plant species on AMF propagule abundance, species richness and composition was therefore examined. The AMF non-host plant species C. majus decreased the abundance of AMF propagules in the soil, whereas the mycorrhizal plants maintained the AMF propagule potential at the same level, however, they changed the composition of AMF species. The results showed that the choice of medicinal plant species, grown even for a relatively short period of time in a monoculture, can substantially alter the AMF potential of soils which in turn can influence the performance of other medicinal plants cultivated subsequently.


arable soil, arbuscular mycorrhiza (AM), cultivation, Glomeromycota

Abu-Zeyad R., Khan A.G., Khoo C., 1999. Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9, 111–117.
American Herbal Pharmacopoeia and Therapeutic Compendium, 1997–2005. Analytical, quality control and therapeutic monographs. Santa Cruz, California.
Anioł-Kwiatkowska J., 2003. Wielojęzyczny słownik florystyczny. Wyd. UW, Wrocław.
Arihara J., Karasawa T., 2000. Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Sci. Plant Nutr. 46, 43–51.
Barnes J., Anderson L.A., Philipson J.D., 2007. Herbal Medicines 3rd edn., London Chicago Pharmaceutical Press.
Bezemer T.M., Lawson C.S., Hedlund K., Edwards A.R., Brook A.J., Igual J.M., Mortimer S.R., Van Der Putten W.H., 2006. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J. Ecol. 94, 893–904.
Błaszkowski J. (ed.), 2012. Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.
Błaszkowski J., Kovács G.M., Gáspár B.K., Balázs T.K., Buscot F., Ryszka P., 2011. The arbuscular mycorrhizal Paraglomus majewskii sp. nov. represents a distinct basal lineage in Glomeromycota. Mycologia 104, 148–156.
Cameron D.D., 2010. Arbuscular mycorrhizal fungi as (agro)ecosystem engineers. Plant Soil 333, 1–5.
Ceccarelli N., Curadi M., Martelloni L., Sbrana C., Picciarelli P., Giovannetti M., 2010. Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335, 311–323.
Copetta A., Lingua G., Berta G., 2006. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16, 485–494.
Dachler M., Pelzmann H., 1999. Arznei- und Gewürzpflanzen. Österreichischer Agrarverlag, Klosterneuburg.
Duan T., Shen Y., Facelli E., Smith S.E., Nan Z., 2010. New agricultural practices in the Loess Plateau of China do not reduce colonisation by arbuscular mycorrhizal or root invading fungi and do not carry a yield penalty. Plant Soil 331, 265–275.
Entz M.H., Penner K.R., Vessey J.K., Zelmer C.D., Martens J.R.T., 2004. Mycorrhizal colonization of flax under long-term organic and conventional management. Can. J. Plant Sci. 84, 1097–1099.
European Pharmacopoeia 6th edn. Vol 2., 2008. Council of Europe, Strasburg.
Franke-Snyder M., Douds D.D. Jr., Galvez L., Phillips J.G., Wagoner P., Drinkwater L., Morton J.B., 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl. Soil Ecol. 16, 35–48.
Gavito M.E., Miller M.H., 1998. Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198, 185–192.
Gerdemann J.W., Nicolson T.H., 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc. 46, 235–244.
Gianinazzi S., Gollotte A., Binet M.-N., van Tuinen D., Redecker D., Wipf D., 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530.
Helgason T., Merryweather J.W., Denison J., Wilson P., Young J.P.W., Fitter A.H., 2002. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J. Ecol. 90, 371–384.
Jambor J., 2001. Kierunki rozwoju krajowego rynku surowców i przetworów zielarskich. Herba Pol. 47, 103–121.
Jansa J., Mozafar A., Anken T., Ruh R., Sanders I.R., Frossard E., 2002. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234.
Johnson D., Vandenkoornhuyse P.J., Leake J.R., Gilbert L., Booth R.E., Grime J.P., Young J.P.W., Read D.J., 2003. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol. 161, 503–515.
Kapoor R., Giri B., Mukerji K.G., 2002a. Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J. Microbiol. Biotechnol. 18, 459–463.
Kapoor R., Giri B., Mukerji K.G., 2002b. Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J. Sci. Food Argric. 82, 339–342.
Kapoor R., Chaudhary V., Bhatnagar A.K., 2007. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17, 581–587.
Karasawa T., Kasahara Y., Takebe M., 2001. Variable response of growth and arbuscular mycorrhizal colonization of maize plants to preceding crops in various types of soils. Biol. Fertil. Soils 33, 286–293.
Khaosaad T., Vierheilig H., Nell M., Zitterl-Eglseer K., Novak J., 2006. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16, 443–446.
Kołodziej B. (red.), 2010. Uprawa ziół – poradnik dla plantatorów. PWRiL Poznań.
Koomen I., Grace C., Hayman D.S., 1987. Effectiveness of single and multiple mycorrhizal inocula on growth of clover and strawberry plants at two soil pHs. Soil Biol. Biochem. 19, 539–544.
Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M., 2002. Flowering Plants and Pteridophytes of Poland. A Checklist. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.
Mocek M., Drzymała S., 2010. Geneza, analiza i klasyfikacja gleb. Wyd. UP w Poznaniu, Poznań.
Oehl F., Sieverding E., Ineichen K., Mäder P., Boller T., Wiemken A., 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 69, 2816–2824.
Oehl F., Sieverding E., Mäder P., Dubois D., Ineichen K., Boller T., Wiemken A., 2004. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Ecosyst. Ecol. 138, 574–583.
Oehl F., Silva G.A., Goto B.T., Sieverding E., 2011a. Glomeromycota: three new genera, and glomoid species reorganized. Mycotaxon 116, 75–120.
Oehl F., Silva G.A., Goto B.T., Maia L.C., Sieverding E., 2011b. Revision of Glomeromycota: two new classes and a new order. Mycotaxon 116, 365–379.
Omar M.B., Bolland L., Heather W.A., 1979. A permanent mounting medium for fungi. B. Brit. Mycol. Soc. 13, 13–32.
Panja B.N., Chaudhuri S., 2004. Exploitation of soil arbuscular mycorrhizal potential for AMdependent mandarin orange plants by pre-cropping with mycotrophic crops. Appl. Soil Ecol. 26, 249–255.
Pérez-Bejarano A., Mataix-Solera J., Zornoza R., Guerrero C., Arcenegui V., Mataix-Beneyto J., Cano-Amat S., 2010. Influence of plant species on physical, chemical and biological soil properties in a Mediterranean forest soil. Eur. J. Forest. Res. 129, 15–24.
Phillips J., Hayman D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55, 158–161.
Pisulewska E., Janeczko Z., 2008. Krajowe rośliny olejkowe. Know-How, Kraków.
Raviv M., 2010. The use of mycorrhiza in organically-grown crops under semi arid conditions: a review of benefits, constraints and future challenges. Symbiosis 52, 65–74.
Ryan M.H., Ash J., 1999. Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic). Agric. Ecosyst. Environ. 73, 51–62.
Schüßler A., Walker C., 2010. The Glomeromycota. A species list with new families and genera.
Gloucester, England, higher_taxa/funneliformis_claroideoglomus_rhizophagus_redeckera.pdf.
Seidler-Łożykowska K., Kucharski W.A., Mordalski R., 2005. Ekologiczna uprawa roślin zielarskich. Rolnictwo ekologiczne. Instytut Roślin i Przetworów Zielarskich, Poznań.
Smith S.E., Read D.J., 2008. Mycorrhizal symbiosis. Third edn. Academic Press, London.
Toussaint J.P., 2007. Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17, 349–353.
Toussaint J.P., Smith F.A., Smith S.E., 2007. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17, 291–297.
Troeh Z.I., Loynachan T.E. 2003. Endomycorrhizal fungal survival in continuous corn, soybean and fallow. Agron. J. 95, 224–230.
Trouvelot A., Kough J.L., Gianinazzi-Pearson V., 1986. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Physiological and genetical aspects of mycorrhizae, Gianinazzi-Pearson V., Gianinazzi S. (eds). INRA, Paris, 217–221.
van Wyk B.E., Wink M., 2008. Medicinal plants of the world. Polish edition. Medpharm Polska, Wrocław.
Vestberg M., Saari K., Kukkonen S., Hurme T., 2005. Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil. Mycorrhiza 15, 447–458.
Vosátka M., 1995. Influence of inoculation with arbuscular mycorrhizal fungi on the growth and mycorrhizal infection of transplanted onion. Agric. Ecosyst. Environ. 53, 151–159.
Wubet T., Weiss M., Kottke I., Oberwinkler F., 2006. Two threatened coexisting indigenous conifer species in the dry Afromontane forests of Ethiopia are associated with distinct arbuscular mycorrhizal fungal communities. Can. J. Bot. 84, 1617–1627.
Zubek S., Błaszkowski J., 2009. Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem. Rev. 8, 571–580.
Zubek S., Błaszkowski J., Delimat A., Turnau K., 2009. Arbuscular mycorrhizal and dark septate endophyte colonization along altitudinal gradients in the Tatra Mountains. Arct. Antarct. Alp. Res. 41, 272–279.
Zubek S., Stojakowska A., Anielska T., Turnau K., 2010. Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20, 497–504.
Zubek S., Błaszkowski J., Mleczko P., 2011. Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Soc. Bot. Pol. 80, 285–292.
Zubek S., Mielcarek S., Turnau K., 2012a. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22, 149–156.
Zubek S., Stefanowicz A.M., Błaszkowski J., Niklińska M., Seidler-Łożykowska K., 2012b. Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Appl. Soil Ecol. 59, 106–115.
Zubek S., Błaszkowski J., Buchwald W., 2012c. Fungal root endophyte associations of medicinal plants. Nova Hedw. 94, 525–540.


Szymon Zubek 
Jagiellonian University, Kraków
Janusz Błaszkowski 
West Pomeranian University of Technology, Szczecin
Katarzyna Seidler-Łożykowska 
Institute of Natural Fibres and Medicinal Plants, Poznań
Wojciech Bąba 
Jagiellonian University, Kraków
Piotr Mleczko 
Jagiellonian University, Kraków



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)