EFFECTS OF NITROGEN AND POTASSIUM FERTILIZATION ON GROWTH, YIELD AND CHEMICAL COMPOSITION OF GARDEN ROCKET

Renata Nurzyńska-Wierdak

University of Life Sciences in Lublin

Katarzyna Dzida

University of Life Sciences in Lublin

Ewa Rożek

University of Life Sciences in Lublin

Zbigniew Jarosz

University of Life Sciences in Lublin



Abstract

Plants of the family Brassicaceae are characterized by high nutritional and fertilization requirements, in particular with respect to nitrogen, potassium, and sulphur. The positive action of the above-mentioned nutrients on plant growth and yield is associated, among others, with their rate and form as well as with interrelationships between individual nutrients. The present experiment was conducted in a greenhouse during the period from March to May in the years 2010 and 2011. Garden rocket plants were seeded individually in 2dm3 pots, with peat as the growing medium. The experimental design included three rates (g dm-3 of medium) of potassium in the form of K2SO4: 0.3 K (and 0.34 S); 0.6 K (and 0.47 S); 0.9 K (and 0.6 S), in the form of KCl: 0.3 K (and 0.27 Cl); 0.6 K (and 0.54 Cl); 0.9 K (and 0.81 Cl), as well as two rates of nitrogen in the form of Ca (NO3)2: 0.3 N (and 0.37 Ca); 0.6 N (and 0.74 Ca). The following traits were determined: plant height (cm), number of leaves per rosette (pcs), plant weight (g), and fresh weight yield of leaf rosettes (g . pot-1). The content of N, P, K, Ca and of Mg, S-SO4, Cl
was determined in dried plant material. The increase in the rate of nitrogen in the nutritional environment of rocket did not affect plant height and the number of leaves per rosette, but it caused a significant increase in fresh weight yield of leaf rosettes, as well as it resulted in an increase in calcium content and a decrease in chlorine concentration in the plants. The increased amount of potassium in the medium contributed to an increase in rocket yield as well as an increase in the concentration of potassium and chlorine. Potassium chloride proved to be a better source of K than sulphur due to the amount of fresh weight and yield of the plants studied. The plants fed with KCl were also characterized by a higher content of nitrogen, chlorine, calcium, and magnesium than after the application
of K2SO4.

Keywords:

Eruca sativa Mill., N and K rate, potassium form, fresh weight yield, macroelements

Abou El-Magd M.M., Omaima M.S., Zaki M.F., Faten S.A.E., 2010. Productivity and quality of two broccoli cultivars as affected by different levels of nitrogen fertilizers. Aust. J. Basic Appl. Sci., 4 (12), 6125–6133.
Abu-Rayyan A., Kharawish B.H., Ismail K., 2004. Nitrate content in lettuce (Lactuca sativa L.) heads in relation to plant spacing, nitrogen form and irrigation level. J. Sci. Food Agric., 84, 9, 931–936.
Asare E., Scarisbrick D.H., 1995. Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (Brassica napus L.). Field Crops Res., 44, 41–46.
Aslam J., Muhammad I., Muhammad I., 2003. Nitrate accumulation in okra and carrot as influenced by fertilizer application. Pak. J. Bot., 35, 4, 637–640.
Barros Junior A.P., Cecilio Filho A.B., Rezende B.L.A., Porto D.R.Q., Prado R.M., 2011. Nitrogen fertilization on intercropping of lettuce and rocket. Hortic. Bras., 29 (3), 398–403.
Biesiada A., Kołota E., 2010. The effect of nitrogen fertilization on yielding and chemical composition of radicchio chicory for autumn-harvest cultivation. Acta Sci. Pol., Hortorum Cultus, 9 (4), 85–91.
Borowski E., Nurzyński J., Michałojć Z., 2000. Reaction of glasshouse tomato to potassium chloride or sulphate fertilization on various substrates. Annales UMCS, EEE, VIII, 1–9.
Catherine S., Schwartz Ch., Morel J.L., 2006. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulphur fertilisation. Internat. J. Phytoremediat., 8, 2, 149–161.
Cavarianni R.L., Cecylio A.B., Cazetta J.O., May A., Corradi M.M., 2008. Nutrient contents and production of rocket as affected by nitrogen concentrations in the nutritive solution. Sci. Agr., 65 (6), 652–658.
Ceylan O., Mordogan N., Cakici H., Yioldas F., 2002. Effects of different nitrogen levels on the yield and nitrogen accumulation in the rocket. Asian J. Plant Sci., 1, 4, 482–483.
Chochura P., Kolota E., 2011. The effect of nitrogen fertilization on radish yielding. Acta Sci. Pol., Hortorum Cultus, 10 (1), 23–30.
De Pascale S., Maggio A., Pernice R., Foghliano V., Barbieri G., 2007. Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Europ. J. Agronomy, 26, 418–424.
Dong H., Li W., Eneji A.E., Zhang D., 2012. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res., 126, 137–144.
Dzida K., Pitura K., 2008. The influence of varied nitrogen fertilization on yield and chemical composition of Swiss chard (Beta vulgaris L. var. cicla L.). Acta Sci. Pol., Hortorum Cultus, 7 (3), 15–24.
Dzida K., Jarosz Z., Michałojć Z., 2011. The effect of diversified potassium fertilization on the field and chemical composition of Beta vulgaris L. Acta Sci. Pol., Hortorum Cultus, 10 (4), 263–274.
Ehsanipour A., Razmjoo J., Zeinali H., 2012. Effect of nitrogen rate on yield and quality of fennel (Foeniculum vulgare Mill.) accessions. Ind. Crops Prod., 35, 121–125.
Fazli I.S., Abdin M.Z., Jamal A., Ahmad S., 2005. Interactive effect of sulphur and nitrogen on lipid accumulation, acetyl-CoA concentration and acetyl-CoA carboxylase activity in developing seeds of oilseed crops (Brassica campestris L. and Eruca sativa Mill.). Plant Sci., 168, 29–36.
Fazli I.S., Jamal A., Ahmad S., Masoodi M., Khan J.S., Abdin M.Z., 2008. Interactive effect of sulphur and nitrogen on nitrogen accumulation and harvest In oilseed crops differing In nitrogen assimilation potential. J. Plant Nutr., 31 (7), 1203–1220.
Hanafy Achmed A.H., Khalil M.K., Farrag Amal M., 2000. Nitrate accumulation, growth, yield and chemical composition of rocket (Eruca vesicaria subsp. sativa) plants as affected by NPK fertilization, kinetin and salicylic acid. ICEHM Cairo Univ., Egypt, 495–508.
Kopcewicz J., Lewak S., 2002. Fizjologia roślin. Wyd. Nauk. PWN, Warszawa.
Lenzi A., Tesi R., 2000. Effect of some cultural factors on nitrate accumulation in rocket [Diplotaxis tenuifolia (L.) D.C. – Eruca sativa Mill.]. Riv. Agronomia, 34 (4), 419–424.
Losak T., Richter R., Hlusek J., Popp T., Antonkiewicz J., Ducsay L., 2005. Potassium and its forms In the nutrition of poppy (Papaver somniferum L.). Nawozy i Nawożenie, 3 (24), 379–383.
Marques D.J., Broetto F., de Silva E.C., de Freitas J.M.N., Lobato A.K.S., Alves G.A.R., 2011.
Changes in leaf proline and fruit production induced by potassium stress in eggplant. J. Food Agric. Environ., 9, 2, 191–194.
Mathot M., Mertens J., Verlinden G., Lambert R., 2008. Positive effect of sulphur fertilisation on grasslands yields and quality in Belgium. Europ. J. Agronomy, 28, 655–658.
Michael H.N., Shafik R.E., Rasmy G.E., 2011. Studies on the chemical constituents of fresh leaf of Eruca sativa extract and its biological activity as anticancer agent in vitro. J. Med. Plants Res., 5 (7), 1184–1191.
Nadasy E., 2002. Effect of nutrition on nitrate dynamic of green pea. Acta Biol. Szeged., 46, 3–4, 205–206.
Nowotny-Mieczyńska A., 1965. Fizjologia mineralnego żywienia roślin. PWRiL, Warszawa.
Nurzyńska-Wierdak R., 2001. Yielding of garden rocket (Eruca sativa) in dependence on differentiated nitrogen fertilization. Veg. Crops Res. Bull., 54 (2), 71–76.
Nurzyńska-Wierdak R., 2006a. The effect of nitrogen fertilization on yield and chemical composition of garden rocket (Eruca sativa Mill.) leaves in autumn cultivation. Acta Sci. Pol., Hortorum Cultus, 5 (1), 53–63.
Nurzyńska-Wierdak R., 2006b. Plon oraz skład chemiczny liści rokiety i kalarepy w zależności od nawożenia azotowo-potasowego. Rozp. Nauk., WAR Lublin.
Nurzyńska-Wierdak R., 2009. Growth and yield of garden rocket (Eruca sativa Mill.) affected by nitrogen and potassium fertilization. Acta Sci. Pol., Hortorum Cultus, 8 (4), 23–33.
Nurzyński J., 1976. Wpływ chlorkowej i siarczanowej formy potasu na ilość i jakość plonu niektórych roślin warzywnych w uprawie na torfie ogrodniczym. Biul. Warz., 19, 105–119.
Nurzyński J., 1986a. Wpływ zawartości wapnia w podłożu i roślinach na wysokość i jakość plonu papryki. Zesz. Nauk. AR Kraków, 211, 16, 143–146.
Nurzyński J., 1986b. Plonowanie papryki w zależności od nawożenia azotowo-potasowego. Zesz. Nauk. AR Kraków, 211, 16, 63–72.
Nurzyński J., Uziak Z., Mokrzecka E., 1980. Effects of various kinds of potassium fertilizers on the yield and quality of greenhouse tomatoes. Acta Agrobot., 33, 2, 197–203.
Nurzyński J., Uziak Z., Mokrzecka E., 1982a. Wpływ formy nawozu potasowego i rodzaju podłoża na plonowanie pomidorów szklarniowych. Zesz. Nauk. AR Kraków, 171, 9, 189–196.
Nurzyński J., Mokrzecka E., Michałojć Z., Wilkowicz M., 1982b. Przydatność chlorku potasu w nawożeniu ogórków szklarniowych. Zesz. Nauk. AR Kraków, 171, 9, 199–208.
Omirou M., Papastefanou Ch., Katsarou D., Papastylianou I., Passam H.C., Haliotis C., Papadopoulou K.K., 2011. Relationships between nitrogen, dry matter accumulation and glucosinolates in Eruca sativa Mills. The applicability of the critical NO3-N levels approach. Plant Soil (article in press).
Osmolovskaya N.G., Kuchaeva L.N., 1994. Nitrate accumulation and its role in ionic status of plants. Suppl. Biol. Plant., 36, 200–210.
Rożek S., Leja M., Myczkowski J., Mareczek A., 1995. The effect of fertilization with nitrate and urea form of nitrogen on quality and storage ability of lettuce grown in a foil tunnel. I. Content of certain nutritive compounds. Folia Hort., 7, 1, 91–105.
Salvagiotti F., Miralles D.J., 2008. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Europ. J. Agronomy, 28, 282–290.
Santamaria P., Elia A., Papa G., Serio F., 1998. Nitrate and ammonium nutrition in chicory and rocket salad plants. J. Plant Nutr., 21, 9, 1779–1789.
Santamaria P., Elia A., Serio F., Gonella M., Parente A., 1999. Comparison between nitrate and ammonium nutrition in fennel, celery and Swiss chard. J. Plant Nutr., 22, 7, 1091–1106.
Scherer H.W., 2001. Sulphur in crop production-invited paper. Europ. J. Agronomy, 14, 81–111.
Shaheen A.M., Fatma A. R., Elbassiony A.M., El-Shal Z.S.A., 2007. Effect of ammonium sulphate and agricultural sulphur on the artichoke plant growth, heads yield and its some physical and chemical properties. Res. J. Agric. Bio. Sci., 3 (2), 82–90.
Shapiro T.A., Fahey J.W., Wade K.L., Stephenson K.K., Talalay P., 2011. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: Metabolism and excretion in humans. Cancer Epidemiol. Biomarkers Prev., 10, 501–508.
Smatanova M., Richter R., Hlusek J., 2004. Spinach and pepper response to nitrogen and sulphue fertilization. Plant Soil Environ., 50 (7), 303–308.
Tian X., Li S., Wang Z., Yin X., Chen S., 2003. Response of lettuce to different nitrogen forms. Chin. J. App. Ecol., 14, 3, 377–381.
Wang Z., Li S., 2004. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr., 27, 3, 539–556.
Zhu Z.J., Jiang Y.T., 1994. Effect of different forms of nitrogen fertilizer on growth and nitrate accumulation in non heading Chinese cabbage. Plant Physiol. Comm., 30, 3, 198–201.
Download

Published
2012-04-30



Renata Nurzyńska-Wierdak 
University of Life Sciences in Lublin
Katarzyna Dzida 
University of Life Sciences in Lublin
Ewa Rożek 
University of Life Sciences in Lublin
Zbigniew Jarosz 
University of Life Sciences in Lublin



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>