Effects of summer pruning on the growth and photosynthetic characteristics of pepper (Capsicum annuum L.)

Ying Peng

Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
https://orcid.org/0000-0003-0937-5047

Hui Tong

Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
https://orcid.org/0009-0003-2048-0080

Wuping Yin

Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
https://orcid.org/0009-0007-4172-4602

Ye Yuan

Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Institute of Agricultural Environment and Ecology, Changsha 410125, China
https://orcid.org/0000-0002-1942-9152

Zuhua Yuan

Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
https://orcid.org/0009-0007-2106-6403


Abstract

The objective of the study is to investigate the mechanism by which summer pruning enhances the growth of pepper plants, as indicated by growth and fruit appearance indicators, photosynthetic rate and gas exchange parameters, rapid light response and induction kinetics curves and the related chlorophyll fluorescence parameters. The results indicated that the leaf growth rate, the individual pepper fruit weight, and the fruit longitudinal and cross diameters of the pruned group were significantly higher than those of the control. The stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of the pruned group were significantly higher than those of the control. The initial slope of the rapid light response curve, which represents light energy utilisation efficiency (α), the maximum electron transfer rate (Jmax) and saturated light intensity (PARsat) were all higher in the summer pruning group than in the control group. The F0 of the pruned group decreased by 16.83%, Fv/F0 increased by 23.69%, PIabs increased by 58.33%, and DIo/RC decreased by 22.09% compared to the control group. In summary, summer pruning significantly improves the leaf growth rate and fruit appearance quality of pepper, effectively promotes the photosynthesis of functional leaves, and reduces the degree of stress under adverse environmental conditions.

Keywords:

chlorophyll fluorescence induction kinetics curves, chlorophyll fluorescence parameters, fruit appearance, gas exchange parameters, rapid light-response curves

Adhikari, S., Kandel, T.P. (2015). Effect of time and level of pruning on vegetative growth, flowering, yield, and quality of guava. Int. J. Fruit Sci. 15(3), 290–301. https://doi.org/10.1080/15538362.2015.1015762 DOI: https://doi.org/10.1080/15538362.2015.1015762

Albarracín, V., Hall, A.J., Searles, P.S., Rousseaux, M.C. (2017). Responses of vegetative growth and fruit yield to winter and summer mechanical pruning in olive trees. Sci. Hortic. 225, 185–194. https://doi.org/10.1016/j.scienta.2017.07.005 DOI: https://doi.org/10.1016/j.scienta.2017.07.005

Bano, H., Athar, H.U., Zafar, Z.U., Kalaji, H.M., Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiol. Plant 172(2), 1244–1254. https://doi.org/10.1111/ppl.13327 DOI: https://doi.org/10.1111/ppl.13327

Bhusal, N., Han, S., Yoon, T. (2017). Summer pruning and reflective film enhance fruit quality in excessively tall spindle apple trees. Hortic. Environ. Biotechnol. 58, 560–567. https://doi.org/10.1007/s13580-017-0375-y DOI: https://doi.org/10.1007/s13580-017-0375-y

Bora, S.S., Hazarika, D.J., Gogoi, R., Dullah, S., Gogoi, M., Barooah, M. (2022). Long-term pruning modulates microbial community structure and their functional potential in Tea (Camellia sinensis L.) soils. Appl. Soil Ecol. 176, 104483. https://doi.org/10.1016/j.apsoil.2022.104483 DOI: https://doi.org/10.1016/j.apsoil.2022.104483

Cao, M., Gan,Q., Xu,Y., Lu, J.K., Zhong, L., Wang, M., Liu, S., Wang, L. (2022). Pruning improves seedling development and bioactive secondary metabolite accumulation in the leaves of Ginkgo biloba. Trees 36, 953–966. https://doi.org/10.1007/s00468-021-02260-2 DOI: https://doi.org/10.1007/s00468-021-02260-2

Chen, S.Y., Cai, L., Zhang, H.P., Zhang, Q.K., Song, J.J., Zhang, Z.H., Deng, Y.F., Liu, Y.L., Wang, X.G., Fang, H. (2021). Deposition distribution, metabolism characteristics, and reduced application dose of difenoconazole in the open field and greenhouse pepper ecosystem. Agric. Ecosyst. Environ. 313, 107370. https://doi.org/10.1016/j.agee.2021.107370 DOI: https://doi.org/10.1016/j.agee.2021.107370

Chiango, H., Figueiredo, A., Sousa, L., Sinclair, T., Marques da Silva, J. (2021). Assessing drought tolerance of traditional maize genotypes of Mozambique using chlorophyll fluorescence parameters. S. Afr. J. Bot. 138, 311–317. https://doi.org/10.1016/j.sajb.2021.01.005 DOI: https://doi.org/10.1016/j.sajb.2021.01.005

Conesa, M.R., Martínez-López, L., Conejero, W., Vera, J., Ruiz-Sánchez, M.C. (2019). Summer pruning of early-maturing Prunus persica: Water implications. Sci. Hortic. 256, 108539. https://doi.org/10.1016/j.scienta.2019.05.066 DOI: https://doi.org/10.1016/j.scienta.2019.05.066

Demirtas, N.M., Bolat, I., Ercisli, S., Ikinci, A., Olmez, H., Sahin, M., Altındag, M., Celık, B. (2010). The effects of different pruning treatments on seasonal variationof carbohydrates in Hacihaliloglu apricot cultivar. Not. Bot. Hort. Agrobot. Cluj 38(3), 223–227.

Du Toit, E.S., Sithole, J., Vorster, J. (2020). Pruning intensity influences growth, flower and fruit development of Moringa oleifera Lam. under sub-optimal growing conditions in Gauteng, South Africa. S. Afr. J. Bot. 129, 448–456. https://doi.org/10.1016/j.sajb.2019.11.033 DOI: https://doi.org/10.1016/j.sajb.2019.11.033

Forrester, D.I., Collopy, J.J., Beadle, C.L., Warren, C.R., Baker, T.G. (2012). Effect of thinning, pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation. Forest Ecol. Manag. 266, 286–300. https://doi.org/10.1016/j.foreco.2011.11.019 DOI: https://doi.org/10.1016/j.foreco.2011.11.019

Glenn, D.M., Campostrini, E. (2011). Girdling and summer pruning in apple increase soil respiration. Sci. Hortic. 129(4), 889–893. https://doi.org/10.1016/j.scienta.2011.04.023 DOI: https://doi.org/10.1016/j.scienta.2011.04.023

He, H. (2016). [Liu Mingyue: the escort of the vegetable industry in Hunan]. J. Changjiang Vegetab. 14, 1–3. In Chinese. https://doi.org/10.3865/j.issn.1001-3547.2016.14.001

Ikinci, A. (2014). Influence of pre- and postharvest summer pruning on the growth, yield, fruit quality, and carbohydrate content of early season peach cultivars. Sci. World J., 104865–104868. https://doi.org/10.1155/2014/104865 DOI: https://doi.org/10.1155/2014/104865

Kasampalis, D.S., Tsouvaltzis, P., Ntouros, K., Gertsis, A., Gitas, I., Siomos, A.S. (2021). The use of digital imaging, chlorophyll fluorescence and Vis/NIR spectroscopy in assessing the ripening stage and freshness status of bell pepper fruit. Comput. Electron. Agric. 187, 106265. https://doi.org/10.1016/j.compag.2021.106265 DOI: https://doi.org/10.1016/j.compag.2021.106265

Kasampalis, D.S., Tsouvaltzis, P., Siomos, A.S. (2020). Chlorophyll fluorescence, non-photochemical quenching and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharv. Biol. Technol. 161, 111036. https://doi.org/10.1016/j.postharvbio.2019.111036 DOI: https://doi.org/10.1016/j.postharvbio.2019.111036

Kovaleski, A.P., Williamson, J.G., Casamali, B., Darnell, R.L. (2015). Effects of timing and intensity of summer pruning on vegetative traits of two southern highbush blueberry cultivars. HortScience 50(1), 68–73. https://doi.org/10.21273/HORTSCI.50.1.68 DOI: https://doi.org/10.21273/HORTSCI.50.1.68

Kumar, M., Rawat, V, Rawat, J.M.S., Tomar, Y.K. (2010). Effect of pruning intensity on peach yield and fruit quality. Scientia Hortic. 125(3), 218–221. https://doi.org/10.1016/j.scienta.2010.03.027 DOI: https://doi.org/10.1016/j.scienta.2010.03.027

Lee, S.G., Cho, J.G., Shin, M.H., Oh, S.B., Kim, H.L., Kim, J.G. (2016). Effects of summer pruning combined with winter pruning on bush growth, yields, and fruit quality of ‘Misty’ southern highbush blueberry for two years after planting. Hortic. Environ. Biotechnol. 56, 740–748. https://doi.org/10.1007/s13580-015-0101-6 DOI: https://doi.org/10.1007/s13580-015-0101-6

Lisboa, M., Acuña, E., Cancino, J., Chao, F., Muñoz, F., Rodríguez, R., Volker, P. (2014). Physiological response to pruning severity in Eucalyptus regnans plantations. New Forest 45, 753–764. https://doi.org/10.1007/s11056-014-9434-8 DOI: https://doi.org/10.1007/s11056-014-9434-8

Li, X.X., Zhang, B.X. (2006). [Descriptors and data standard for Capsicum (Capsicum annuum L., Capsicum frutescens L., Capsicum chinense, Capsicum baccatum, Capsicum pubescens) pepper germplasm]. China Agric. Press, 12–22. In Chinese.

Lv, J.H., Liu, Z.B., Liu, Y.H., Ou, L.J., Deng, M.H., Wang, J., Song, J.S., Ma, Y.Q., Chen, W.C., Zhang, Z.Q., Dai, X.Z., Zou, X.X. (2020). Comparative transcriptome analysis between cytoplasmic male-sterile line and its maintainer during the floral bud development of pepper. Hortic. Plant J. 6(2), 89–98. https://doi.org/10.1016/j.hpj.2020.01.004 DOI: https://doi.org/10.1016/j.hpj.2020.01.004

Mao, L.Z., Tian, W.F., Shen, Y.Y., Huang, Y., Lv, J.H., Zhang, X., Sun, Y., Dai, Y.H., Zhou, Y., Yang, B.Z., Ou, L.J, Zou, X.X, Liu, Z.B. (2023). Auxin-related MYB (CaSRM1) is involved in leaf shape development and reproductive growth in pepper (Capsicum annuum L.). Scientia Hortic. 322, 112383. https://doi.org/10.1016/j.scienta.2023.112383 DOI: https://doi.org/10.1016/j.scienta.2023.112383

Mendes Bezerra, A.C., da Cunha Valença, D., da Gama Junqueira, N.E., Moll Hüther, C., Borella, J., Ferreira de Pinho, C., Alves Ferreira, M., Oliveira Medici, L., Ortiz-Silva, B., Reinert, F. (2021). Potassium supply promotes the mitigation of NaCl-induced effects on leaf photochemistry, metabolism and morphology of Setaria viridis. Plant Physiol. Biochem. 160, 193–210. https://doi.org/10.1016/j.plaphy.2021.01.021 DOI: https://doi.org/10.1016/j.plaphy.2021.01.021

Mierowska, A., Keutgen, N., Huysamer, M., Smith, V. (2002). Photosynthetic acclimation of apple spur leaves to summer-pruning. Sci Hortic. 92(1), 9–27. https://doi.org/10.1016/S0304-4238(01)00275-8 DOI: https://doi.org/10.1016/S0304-4238(01)00275-8

Mozumder, N.R., Hwang, K.H., Lee, M.-S., Kim, E.-H., Hong, Y.-S. (2021). Metabolomic understanding of the difference between unpruning and pruning cultivation of tea (Camellia sinensis) plants. Food Res. Int. 140, 109978. https://doi.org/10.1016/j.foodres.2020.109978 DOI: https://doi.org/10.1016/j.foodres.2020.109978

Peng, J., Li, W., Yuan, Y., Han, Z., Cao, Y., Shahid, M.Q., Zhang, Z., Gao, Y., Lin, S. (2022). Removal of the main inflorescence to induce reflowering of loquat. Hortic. Plant J. 8(1), 35–43. https://doi.org/10.1016/j.hpj.2021.03.009 DOI: https://doi.org/10.1016/j.hpj.2021.03.009

Shao, M.Z., Shi, M.H., Hu, M., Liu, P. (2019). [Yichang points local pepper pruning regeneration cultivation technology]. J. Changjiang Veg. 15, 33–35. In Chinese.

Shin, Y.K., Bhandari, S.R., Jo, J.S., Song, J.W., Lee, J.G. (2021). Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antiox idant activities in lettuce seedlings. Horticulturae 7(8), 238. https://doi.org/10.3390/horticulturae7080238 DOI: https://doi.org/10.3390/horticulturae7080238

Sousaraei, N., Mashayekhi, K., Mousavizadeh, S.J., Akbarpour, V., Medina, J., Aliniaeifard, S. (2021). Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. Hortic. Environ. Biotechnol. 62, 521–535. https://doi.org/10.1007/s13580-020-00328-5 DOI: https://doi.org/10.1007/s13580-020-00328-5

Sun, B.M., Zhou, X., Chen, C.M., Chen, C.J., Chen, K.H., Chen, M.X., Liu, S.Q., Chen, G.J., Cao, B.H., Cao, F.R., Lei, J.J., Zhu, Z.S. (2020). Coexpression network analysis reveals an MYB transcriptional activator involved in capsaicinoid biosynthesis in hot peppers. Hortic. Res. 7, 162. https://doi.org/10.1038/s41438-020-00381-2 DOI: https://doi.org/10.1038/s41438-020-00381-2

Ye, Z.P., Suggett, D.J. Robakowski, P., Kang, H.J. (2013). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytol. 199(1), 110–120. https://doi.org/10.1111/nph.12242 DOI: https://doi.org/10.1111/nph.12242

Yuan, Z.H., Tong, H.,Yang, J., Peng, Y. (2015). [The effect of different cultivation modes on the yield and output value of chili pepper]. Hunan Agricultural Science 5, 61–62, 64. In Chinese. https://doi.org/10.16498/j.cnki.hnnykx.2015.05.023

Zhang, D., Cai, W., Zhang, X., Li, W., Zhou, Y., Chen, Y., Mi, Q., Jin, L., Xu, L. (2022). Different pruning level effects on flowering period and chlorophyll fluorescence parameters of Loropetalum chinense var. Rubrum. Peer J. 10, e13406. https://doi.org/10.7717/peerj.13406 DOI: https://doi.org/10.7717/peerj.13406

Zhang, L., Koc, A.B., Wang, X.N., Jiang, Y.X. (2018). A review of pruning fruit trees. IOP Conf. Ser. Earth Environ. Sci. 153(6), 062029. https://doi.org/10.1088/1755-1315/153/6/062029 DOI: https://doi.org/10.1088/1755-1315/153/6/062029

Zhang, L., Xu, Y.S., Jia, Y., Wang, J.Y., Yuan, Y., Yu, Y., Tao, J.M. (2016). Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in ‘Houman’ grape. Hortic. Res. 3, 16037. https://doi.org/10.1038/hortres.2016.37 DOI: https://doi.org/10.1038/hortres.2016.37

Download

Published
2024-02-29



Ying Peng 
Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China https://orcid.org/0000-0003-0937-5047
Hui Tong 
Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China https://orcid.org/0009-0003-2048-0080
Wuping Yin 
Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China https://orcid.org/0009-0007-4172-4602
Ye Yuan 
Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Institute of Agricultural Environment and Ecology, Changsha 410125, China https://orcid.org/0000-0002-1942-9152
Zuhua Yuan 
Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China https://orcid.org/0009-0007-2106-6403



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.