Non-degradable polypropylene nonwovens are difficult to dispose and their utilization represents high economic costs. This study was conducted on lettuce cultivated during the spring and autumn seasons in the southern part of Poland to test biodegradable nonwovens as plant covers. Several nonwovens were developed from aliphatic-aromatic copolyesters (ACC), one without modifiers (SB48/11) and three with the addition of fatty acid dimers: two commercial variants (SB20/13, SB21/13) and one made from plant biomass (SB28/13). Nonwoven polypropylene (PP) fleece was included as a control cover. One week after covering with SB48/11, stomatal conductance (gs) increased in lettuce plants in parallel with higher transpiration rate (E) and sub-stomatal CO2 concentration (Ci) relative to the control, but differences in these parameters evened out in mature plants. In the spring, degradable covers with their higher mass per unit area, caused a decrease in marketable yield of lettuce compared to the control PP, resulting mainly from the deterioration of plant quality and lower mean weight per head. In the autumn season, yield was statistically not different between treatments. Yield of spring lettuces was 78% higher compared to the autumn cultivation period. Plants grown under SB20/13 had the lowest dry weight and L-ascorbic acid, while plants under SB21/13 had the highest dry weight and L-ascorbic acid content. Plants under SB28/13 had higher chlorophyll a content. Generally, no effect of covers was noted for carotenoid concentrations. The content of dry weight, L-ascorbic acid, and carotenoids were higher in plants harvested in spring, while no effects of crop season on chlorophyll level were observed. All tested biodegradable nonwovens are a potential substitute for standard polypropylene in autumn trials, but for spring covering unit weight of these materials should be reduced.
<< < 32 33 34 35 36 37 38 39 40 41 > >>
You may also start an advanced similarity search for this article.