Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 6 (2019)

Articles

ASSESSMENT OF ANTIOXIDANTS BY HPLC-MS IN GRAPEVINE SEEDS

DOI: https://doi.org/10.24326/asphc.2019.6.2
Submitted: December 17, 2019
Published: 2019-12-17

Abstract

It is well known, that grapevine seeds are rich in significant antioxidants. However, the issue of dealing with the analysis and comparison of antioxidant components in the seeds of Vitis vinifera L. in individual cultivars has not yet been sufficiently studied. The experiment was performed with extracts of three varieties (Blaufränkish, Italian Riesling and Cabernet Moravia) and three interspecific cultivars (Nativa, Marlen and Kofranka). Contents of nine major flavonoids (apigenin, astragalin, hyperoside, isorhamnetin, kaempferol, myricetin, quercetin, quercitrin and rutin) and two procyanidins (procyanidin A2 and procyanidin B1) were assessed by the HPLC/MS method. The highest contents of antioxidants were found out in interspecific cultivars Marlen and Nativa while the lowest one was assessed in the cultivar Cabernet Moravia. The most represented flavonoid was hyperoside (cultivar Marlen – 15.66 mg∙l–1), least represented was kaempferol (cultivar Cabernet Moravia – 1.81 μg∙l–1).

References

  1. Alibabic, A., Skender, A., Orascanin, M., Sertovic, E., Bajric, E. (2018). Evaluation of morphological, chemical, and sensory characteristics of raspberry cultivars grown in Bosnia and Herzegovina. Turk. J. Agric. For., 42, 67–74.
  2. Al-Malki, A.L., Sayed, A.A.R., El Rabey, H.A. (2013). Proanthocyanidin attenuation of oxidative stress and NF-κB protects apolipoprotein e-deficient mice against diabetic nephropathy. Evid. Based Complement. Altern. Med., ID: 769409.
  3. Andlauer, W., Stumpf, C., Hubert, M, Rings, A., Furst, P. (2003). Influence of cooking process on phenolic marker compounds of vegetables. Int. J. Vitam. Nutr. Res., 73, 152–159.
  4. Bagdonaite, E., Jakstas, V., Raudonis, R., Janulis, V. (2013). Chlorogenic acid, rutin and hyperoside content in Fragaria vesca, F-viridis and F-moschata in Lithuania. Nat. Prod. Res., 27, 181–184.
  5. Belkhir, M., Rebai, O., Dhaouadi, K., Congiu, F., Tuberoso, C.I.G., Amri, M., Fattouch, S. (2013). Comparative analysis of Tunisian wild Crataegus azarolus (Yellow Azarole) and Crataegus monogyna (Red Azarole) leaf, fruit, and traditionally derived Syrup: phenolic profiles and antioxidant and antimicrobial activities of the aqueous-acetone extracts. J. Agric. Food Chem., 61, 9594–9601.
  6. Blanch, M., Alvarez, I., Sanchez-Ballesta, M.T., Escribano, M.I., Merodio, C. (2012). Increasing catechin and procyanindin accumulation in high-CO2-treated Fragaria vesca strawberries. J. Agric. Food Chem., 60, 7489–7496.
  7. Caimari, A., Del Bas, J.M., Crescenti, A., Arola, L. (2013). Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. Int. J. Obesity, 37, 576–583.
  8. Capanoglu, E., Beekwilder, J., Matros, A., Boyacioglu, D., Hall, R.D., Mock, H.P. (2012). Correlation of rutin accumulation with 3-o-glucosyl transferase and phenylalanine ammonia-lyase activities during the ripening of tomato fruit. Plant Food Hum. Nutr., 67, 371–376.
  9. Chamorro, S., Goni, I., Viveros, A., Hervert-Hernandez, D., Brenes, A. (2012). Changes in polyphenolic content and antioxidant activity after thermal treatments of grape seed extract and grape pomace. Eur. Food Res. Technol., 234, 147–155.
  10. Charradi, K., Elkahoui, S., Karkouch, I., Limam, F., Ben Hassine, F., Aouani, E. (2012). Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat. Neurochem. Res., 37, 2004–2013.
  11. Choi, J., Kang, H.J., Kim, S.Z., Kwon, T.O., Jeong, S.I., Jang, S.I. (2013). Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch. Pharm. Res., 36, 912–917.
  12. Cirak, C., Radusiene, J., Camas, N., Caliskan, O., Odabas, M.S. (2013). Changes in the contents of main secondary metabolites in two Turkish Hypericum species during plant development. Pharm. Biol., 51, 391–399.
  13. Dragoni, S., Gee, J., Bennett, R., Valoti, M., Sgaragli, G. (2006). Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. Br. J. Pharmacol., 147, 765–771.
  14. Eftekhari, M., Alizadeh, M., Ebrahimi, P. (2012). Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind. Crop. Prod., 38, 160–165.
  15. Gaberscik, A., Voncina, M., Trost, T., Germ, M., Bjorn, L.O. (2002). Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. J. Photochem. Photobiol. B., 66, 30–36.
  16. Gaivelyte, K., Jakstas, V., Razukas, A., Janulis, V. (2013). Variation in the contents of neochlorogenic acid, chlorogenic acid and three quercetin glycosides in leaves and fruits of rowan (Sorbus) species and varieties from collections in Lithuania. Nat. Prod. Commun., 8, 1105–1110.
  17. Galiana-Belaguer, L., Ibanez, G., Cebolla-Cornejo, J., Rosello, S. (2018). Evaluation of germplasm in Solanum section Lycopersicon for tomato taste improvement. Turk. J. Agric. For., 42, 309–321.
  18. Guo, C.J., Wei, J.Y., Liu, Y., Gao, W.N., Pu, L.L., Wu, J.Q., Yang, J.J. (2013). Contents of quercetin, kaempferol, myricetin and luteolin of vegetables and fruits in China and estimated dietary intake by Chinise. Ann. Nutr. Metab., 63, 1584–1585.
  19. Harborne, J.B., Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504.
  20. Harris, N.L. (1999). Klasifikace leukémii a lymfomů dle WHO. J. Clin. Oncol., 17, 3835−3843.
  21. Hassan, H.A., Al-Rawi, M.M. (2013). Grape seeds proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid induced oxidative stress and cellular alterations. Cytotechnology, 65, 567–576.
  22. Hicks, J.M., Muhammad, A., Ferrier, J., Saleem, A., Cuerrier, A., Arnason, J.T., Colson, K.L. (2012). Quantification of chlorogenic acid and hyperoside directly from crude blueberry (Vaccinium angustifolium) leaf extract by NMR spectroscopy analysis: single-laboratory validation. J. AOAC Int., 95, 1406–1411.
  23. Khanal, R.C., Howard, L.R., Prior, R.L. (2009). Procyanidin composition of selected fruits and fruit byproducts is affected by extraction method and variety. J. Agric. Food Chem., 57, 8839–8843.
  24. Kin, R., Kato, S., Kaneto, N., Sakurai, H., Hayakawa, Y., Li, F., Tanaka, K., Saiki, I., Yokoyama, S. (2013). Procyanidin C1 from Cinnamomi Cortex inhibits TGF-beta-induced epithelial-to-mesenchymal transition in the A549 lung cancer cell line. Int. J. Oncol., 43, 1901–1906.
  25. Kondo, K., Kurihara, M., Fukuhara, M., Tanaka, T., Suzuki, T., Miyata, N., Toyoda, M. (2000). Conversion of procyanidin B-type (catechin dimer) to A-type: evidence for abstraction of C-2 hydrogen in catechin during radical oxidation. Tetrahedron Lett., 41, 485–488.
  26. Krvavac, J., Kovac-Besovic, E., Toromanovic, J., Salihovic, M., Tahirovic, I., Duric, K., Klepo, L., Sapcanin, A., Sofic, E. (2009). Determination of arbutin, rutin, total content of phenols and antioxidant capacity in fruits and leaves of lingonberry, Vaccinium vitis-idaea L. (Ericaceae). Planta Med., 75, 1062–1062.
  27. Kumar, A., Malik, A.K., Tewary, D.K. (2009). A new method for determination of myricetin and quercetin using solid phase microextraction-high performance liquid chromatography-ultra violet/visible system in grapes, vegetables and red wine samples. Anal. Chim. Acta., 631, 177–181.
  28. Lai, X.H., Kang, X.C., Zeng, L.M., Li, J., Yang, Y., Liu, D.B. (2014). The protective effects and genetic pathways of thorn grape seeds oil against high glucose-induced apoptosis in pancreatic beta-cells. BMC Complement. Altern. Med., 14.
  29. Lee, C.C., Shen, S.R., Lai, Y.J., Wu, S.C. (2013). Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct., 4, 794–802.
  30. Mansouri, E., Panahi, M., Ghaffari, M.A., Ghorbani, A. (2012). Grape seed proanthocyanidin extract ameliorates albuminuria and renal sclerosis in experimental diabetic nephropathy rats. Asian Biomed., 6, 195–202.
  31. Medvedev, S., Tyukavki, N., Ivanova, S.Z. (1972). Astragalin from conifer of Larix sibirica. Khim. Prirod. Soedinenii, 123.
  32. Mok, S.Y., Kim, H.M., Lee, S. (2013). Isolation of astragalin from flowers of Rhododendron mucronulatum for. albiflorum. Hortic. Environ. Biotechnol., 54, 450–455.
  33. Nechita, A., Cotea, V.V., Nechita, C.B., Pincu, R.R., Mihai, C.T., Colibaba, C.L. (2012). Study of cytostatic and cytotoxic activity of several polyphenolic extracts obtained from Vitis vinifera. Not. Bot. Horti Agrobot. Cluj-Napoca., 40, 216–221.
  34. Ozdemir, F., Nadeem, H.S., Akdogan, A., Dincer, C., Topuz, A. (2018). Effect of altitude, shooting period, and tea grade on the catechins, caffeine, theaflavin, and thearubigin of Turkish black tea. Turk. J. Agric. For., 42, 334–340.
  35. Ozcan, C., Yaman, M. (2013). Determination of Kaempferol in Rosa canina, Urtica dioica, Terebinthina chica and Portulace oleracea by HPLC-MS. Asian J. Chem., 25, 9758–9762.
  36. Pallares, V., Cedo, L., Castell-Auvi, A., Pinent, M., Ardevol, A., Arola, L., Blay, M. (2013). Effects of grape seed procyanidin extract over low-grade chronic inflammation of obese Zucker fa/fa rats. Food Res. Int., 53, 319–324.
  37. Raina, K., Tyagi, A., Kumar, D., Agarwal, R., Agarwal, C. (2013). Role of oxidative stress in cytotoxicity of grape seed extract in human bladder cancer cells. Food Chem. Toxicol., 61, 187–195.
  38. Ras, R.T., Zock, P.L., Zebregs, Y., Johnston, N.R., Webb, D.J., Draijer, R. (2013). Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br. J. Nutr., 110, 2234–2241.
  39. Robbins, R.J., Leonczak, J., Li, J., Johnson, J.C., Collins, T., Kwik-Uribe, C., Schmitz, H.H. (2013). Flavanol and procyanidin content (by degree of polymerization 1–10) of chocolate, cocoa liquors, cocoa powders, and cocoa extracts: first action 2012.24. J. AOAC Int., 96, 705–711.
  40. Rockenbach, I.I., Gonzaga, L.V., Rizelio, V.M., Goncalves, A., Genovese, A., Fett, R. (2011). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int., 44, 897–901.
  41. Rodriguez-Mateos, A., Cifuentes-Gomez, T., Tabatabaee, S., Lecras, C., Spencer, J.P.E. (2012). Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. J. Agric. Food Chem., 60, 5772–5778.
  42. Sun, C., McIntyre, K., Saleem, A., Haddad, P.S., Arnason, J.T. (2012). The relationship between antiglycation activity and procyanidin and phenolic content in commercial grape seed products. Can. J. Physiol. Pharmacol., 90, 167–174.
  43. Wang, H., Zhang, C.J., Lu, D., Shu, X.M., Zhu, L.H., Qi, R.B., So, K.F., Lu, D.X., Xu, Y. (2013). Oligomeric proanthocyanidin protects retinal ganglion cells against oxidative stress-induced apoptosis. Neural Regen. Res., 8, 2317–2326.
  44. Weider, S., Rybarczyk, A., Karamac, M., Krol, A., Mostek, A., Grebosz, J., Amarowicz, E. (2013). Differences in the phenolic composition and antioxidant properties between Vitis coignetiae and Vitis vinifera seeds extracts. Molecules, 18, 3410–3426.
  45. White, B.L., Howard, L.R., Prior, R.L. (2011). Impact of different stages of juice processing on the anthocyanin, flavonol, and procyanidin contents of cranberries. J. Agric. Food Chem., 59, 4692–4698.
  46. Xie, Y., Luo, H.L., Duan, J.Z., Hong, C., Ma, P., Li, G.W., Zhang, T., Wu, T., Ji, G. (2014). Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L. Fitoterapia, 93, 216–225.
  47. Yang, J.H., Shin, B.Y., Han, J.Y., Kim, M.G., Wi, J.E., Kim, Y.W., Cho, J.J., Kim, S.C., Shin, S.M., Ki, S.H. (2014). Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol. Appl. Pharmacol., 274, 293–301.
  48. Zhang, Z., Li, B.Y., Li, X.L., Cheng, M., Yu, F., Lu, W.D., Cai, Q., Wang, J.F., Zhou, R.H., Gao, H.Q., Shen, L. (2013). Proteomic analysis of kidney and protective effects of grape seed procyanidin B2 in db/db mice indicate MFG-E8 as a key molecule in the development of diabetic nephropathy. BBA. Mol. Basis. Dis., 1832, 805–816.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.