Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 6 (2022)

Articles

Extraction and analysis of ruscogenins from butcher’s broom (Ruscus aculeatus L.) rhizomes using HPLC

DOI: https://doi.org/10.24326/asphc.2022.6.12
Submitted: August 2, 2022
Published: 2022-12-30

Abstract

Butcher’s broom (Ruscus aculeatus L.) is a plant with valuable chemical composition and many medical applications. The underground rhizomes of the plant contain steroidal saponins, compounds with proven therapeutic effects and used mostly in treating venous insufficiency. The research aimed to optimise the extraction of saponins from butcher’s broom rhizomes to obtain the highest possible content of active compounds in the dry extract. The extraction was carried out in five variants using pure water or a mixture of water and ethanol as solvents in different potions. Three samples of butcher’s broom rhizomes from Albania, Bulgaria, and Germany were examined for the presence of highest level of sapogenin active ingredient. Results show that Albanian sample has the highest percentage of ruscogenins, and hence Albanian butcher’s broom rhizomes were chosen for the extraction of active ingredient by alcoholic solution with different concentration. The sapogenin content in the extracts was determined by the pharmacopoeial method using high performance liquid chromatography (HPLC). A strong, positive correlation was found between ethanol concentration and the content of ruscogenins in the dry extract. The most efficient variant of the extraction turned out to be the use of 50% ethanol as a solvent, where 304 mg of ruscogenins were obtained from 50 g of the raw material.

References

  1. Akbari, S., Abdurahman, N.H., Yunus, R.M. (2019). Optimization of saponins. phenolics. and antioxidants extracted from fenugreek seeds using microwave-assisted extraction and response surface methodology as an optimizing tool. C. R. Chimie, 22, 714–727. https://doi.org/10.1016/j.crci.2019.07.007 DOI: https://doi.org/10.1016/j.crci.2019.07.007
  2. Akbarizare, M., Ofoghi, H., Hadizadeh, M. (2019). In vitro anticancer evaluation of saponins obtained from Spirulina platensis on MDA, HepG2, and MCF7 cell lines. Multidiscip. Cancer Invest., 3(4), 25–32. https://doi.org/10.30699/acadpub.mci.3.4.25 DOI: https://doi.org/10.30699/acadpub.mci.3.4.25
  3. Amid, B.T., Mirhosseini, H. (2012). Effect of different purification techniques on the characteristics of heteropolysaccharide-protein biopolymer from Durian (Durio zibethinus) seed. Molecules, 17(9), 10875–10892. https://doi.org/10.3390/molecules170910875 DOI: https://doi.org/10.3390/molecules170910875
  4. Balica, G., Voștinaru, O., Tămaş, M., Crișan, G., Mogoșan, C. (2013). Anti-inflammatory effect of the crude steroidal saponin from the rhizomes of Ruscus aculeatus L. (Ruscaceae) in two rat models of acute inflammation. J. Food Agric. Environ., 11(3–4), 106–108.
  5. Chudek, J., Ziaja, D. (2017). Wyciąg z ruszczyka kolczastego w leczeniu przewlekłej choroby żylnej [Ruscus aculeatus extract in the therapy of chronić venous disorders]. Chir. Pol., 19, 1–2, 13–17 [in Polish].
  6. Deng, B., Liu, Z., Zou, Z. (2019). Optimization of microwave-assisted extraction saponins from Sapindus mukorossi pericarps and an evaluation of their inhibitory activity on xanthine oxidase. J. Chem., 5204534. https://doi.org/10.1155/2019/5204534 DOI: https://doi.org/10.1155/2019/5204534
  7. De Marino, S., Festa, C., Zollo, F., Iorizzi, M. (2012). Novel steroidal components from the underground parts of Ruscus aculeatus L. Molecules, 17(12), 14002–14014. https://doi.org/10.3390/molecules171214002 DOI: https://doi.org/10.3390/molecules171214002
  8. El Aziz, M.M.A., Ashour, A.S., Melad, A.S.G. (2019). A review on saponins from medicinal plants: chemistry. isolation. and determination. J. Nanomed. Res., 7(4), 282‒288. https://doi.org/10.15406/jnmr.2019.07.00199 DOI: https://doi.org/10.15406/jnmr.2019.07.00199
  9. Espinoza, C.R., Ruiz, C.A.J., Ramos, O.P.F., Solano, M.A.Q, Quiñonez, G.H., Mallma, N.E.S. (2021). Optimization of the ultrasoud-assisted extraction of saponins from quinoa (chenopodium quinoa wild) using response surface methodology. Acta Sci. Pol. Technol. Aliment, 20(1), 17–23. https://doi.org/10.17306/J.AFS.0859 DOI: https://doi.org/10.17306/J.AFS.2021.0859
  10. European Medicines Agency, (2019). Assessment report on Ruscus aculeatus L. rhizoma. EMA/HMPC/188805/2017.
  11. Francis, G., Kerem, Z., Makkar, H.P.S., Becker, K. (2002). The biological action of saponins in animal systems: a review. Brit. J. Nutr., 88, 587–605. https://doi.org/10.1079/BJN2002725. DOI: https://doi.org/10.1079/BJN2002725
  12. Ghorbani, S., Sonboli, A., Ebrahimi, S.N., Mirjalili, M.H. (2020). Molecular authentication and phytochemical assessment of Ruscus hyrcanus Woron. (Asparagaceae) based on trnH- psbA barcoding and HPLC-PDA analysis. Biocat. Agric. Biotechnol., 25. https://doi.org/10.1016/j.bcab.2020.101585 DOI: https://doi.org/10.1016/j.bcab.2020.101585
  13. Güçlü-Üstündağ, Ö., Mazza, G. (2007). Saponins: properties. Applications and processing. Crit. Rev. Food Sci. Nutr., 47(3), 231–258. https://doi.org/10.1080/10408390600698197 DOI: https://doi.org/10.1080/10408390600698197
  14. Hadžifejzović, N., Kukić-Marković, J., Petrović, S., Soković, M., Glamočlija, J., Stojković, D., Nahrstedt, A. (2013). Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L. Ind. Crops Prod., 49, 407–411. https://doi.org/10.1016/j.indcrop.2013.05.036 DOI: https://doi.org/10.1016/j.indcrop.2013.05.036
  15. Ivanova, T., Dimitrova, D., Gussev, C., Bosseva, Y., Stoeva, T. (2015). Ex situ conservation of Ruscus aculeatus L. ruscogenin biosynthesis. genome-size stability and propagation traits of tissue-cultured clones. Biotechnol. Biotechnol. Equip., 29(1), 27–32. http://dx.doi.org/10.1080/13102818.2014.984976 DOI: https://doi.org/10.1080/13102818.2014.984976
  16. Ivanova, T., Banciu, C., Gussev, C.,Bosseva, Y., Dimitrova, D., Stoeva, T., Manole, A. (2019). Dynamics of the ruscogenin biosynthesis in Ruscus aculeatus L. (Liliaceae) in vitro cultures. Rom. Biotechnol. Lett., 24(2), 354–359. https://doi.org/10.25083/rbl/24.2/354.359 DOI: https://doi.org/10.25083/rbl/24.2/354.359
  17. Kite, G.C., Porter, E.A., Simmonds, M.S.J. 2007. Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A., 1148(2), 177–183. https://doi:10.1016/j.chroma.2007.03.012 DOI: https://doi.org/10.1016/j.chroma.2007.03.012
  18. Le, A.V., Parks, S.E., Nguyen, M.H., Roach, P.D. (2018). Optimization of the microwave-assisted ethanol extraction of saponins from gac (Momordica cochinchinensis Spreng.) seeds. Medicines, 5(3), 70. https://doi.org/10.3390/medicines5030070 DOI: https://doi.org/10.3390/medicines5030070
  19. Masullo, M., Pizza, C., Piacente S. (2016). Ruscus genus: a rich source of bioactive steroidal saponins. Planta Med., 82(18), 1513–1524. http://dx.doi.org/10.1055/s-0042-119728 DOI: https://doi.org/10.1055/s-0042-119728
  20. Ozer, G., Guzelmeric, E., Sezgin, G., Ozyurek, E., Arslan, A., Sezik, E., Yesilada, E. (2018). Comparative determination of ruscogenins content in Butcher’s Broom rhizome samples gathered from the populations grown in different soil conditions in the Marmara Region and attempts for pilot field cultivation of rhizomes. J. Chem. Metrol., 12(1), 79–88. http://doi.org/10.25135/jcm.17.18.05.094 DOI: https://doi.org/10.25135/jcm.17.18.05.094
  21. Polish Pharmacopoeia XI [Farmakopea Polska XI], (2017). Kłącze ruszczyka [Ruscus aculeatus] 01/2017:1847. Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych [Office for Registration of Medicinal Products, Medical Devices and Biocidal Products]. Warsaw [in Polish].
  22. Raposo, A., Saraiva, A., Ramos, F., Carrascosa, C., Raheem, D., Bárbara, R., Silva, H. (2021). The role of food supplementation in microcirculation – a comprehensive review. Biology, 10(7), 616. https://doi.org/10.3390/biology10070616 DOI: https://doi.org/10.3390/biology10070616
  23. Rodrigues, J.P.B., Fernandes, A., Dias, M.I., Pereira, C., Pires, T.C.S.P., Calhelha, R.C., Carvalho, A.M., Ferreira, I.C.F.R., Barros, L. (2021). Phenolic compounds and bioactive properties of Ruscus aculeatus L. (Asparagaceae): The pharmacological potential of an underexploited subshrub. Molecules, 26(7), 1882. https://doi.org/10.3390/molecules26071882 DOI: https://doi.org/10.3390/molecules26071882
  24. Schwarz, M.W. (2000). Saponins. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley‐VCH, 177–191. DOI: https://doi.org/10.1002/14356007.a23_485
  25. Tansi, S., Kokdil, G., Karaman, S., Toncer, O., Yilmaz, H. (2007). Variation in ruscogenin contents in Ruscus aculeatus L. growing wild in Southern Turkey. Asian J. Chem., 19(4), 3015–3022.
  26. Taşkın, T., Güler, E., Şahin, T., Bulut, G. (2020). Enzyme inhibitory and antioxidant activities of different extracts from Ruscus aculeatus L. Acta Pharm. Sci., 58(4). https://doi.org/10.23893/1307-2080.APS.05828 DOI: https://doi.org/10.23893/1307-2080.APS.05828
  27. Thomas, P.A., Mukassabi, T.A. (2014). Biological flora of the British Isles: Ruscus aculeatus. J. Ecol., 102(4), 1083–1100. https://doi.org/10.1111/1365-2745.12265 DOI: https://doi.org/10.1111/1365-2745.12265
  28. Tomkowski, W.Z. (2014). Leczenie przewlekłej niewydolności żylnej za pomocą połączenia Ruscus aculeatus, metylochalkonu hesperydyny i kwasu askorbinowego – przegląd piśmiennictwa [Treatment of venous insufficiency with Ruscus aculeatus, hesperidin methylchalcone and ascorbic acid – review article. Acta Angiol., 20(3), 106–111 [in Polish].
  29. Urbanek, T. (2017). The clinical efficacy of Ruscus aculeatus extract: is there enough evidence to update the pharmacotherapy guidelines for chronic venous disease? Phlebol. Rev., 25(1), 75–80. https://doi.org/10.5114/pr.2017.70594 DOI: https://doi.org/10.5114/pr.2017.70594
  30. Wang, G., Wang, J., Liu, W., Nisar, M.F., El-Esawi, M.A., Wan. C. (2021). Biological activities and chemistry of triterpene saponins from Medicago species: evidence-based complementary and alternative medicine. 6617916. https://doi.org/10.1155/2021/6617916 DOI: https://doi.org/10.1155/2021/6617916

Downloads

Download data is not yet available.

Most read articles by the same author(s)

<< < 1 2 3 4 

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.