Sławomir Świerczyński

Department of Dendrology, Pomology and Nursery, Poznań University of Life Sciences, Poland

Marcin Kolasiński

Department of Dendrology, Pomology and Nursery, Poznań University of Life Sciences, Poland

Aleksander Stachowiak

Department of Dendrology, Pomology and Nursery, Poznań University of Life Sciences, Poland

Magdalena Rybus-Zając

Department of Plant Physiology, Poznań University of Life Sciences, Poland


The experimental studies were conducted from 2015–2017 years in two cycles. The aim of the research was to determine a better grafting time and a choice of an appropriate rootstock for the propagation of two cultivars of mountain pine (Pinus mugo Turra). The influence of the grafted cultivar and rootstock used on the level of chloroplast pigments in the needles was also checked. The studies concerned two cultivars of mountain pine (Pinus mugo) ‘Grześ’ and ‘Zundert’, which were grafted on four different rootstocks: Pinus contorta (Dougl. ex Loud.), Pinus nigra (Arn.), Pinus sylvestris (L.) and Pinus mugo subsp. uncinata (Ramond Domin) in two dates: 20 January and 15 March. The highest percentage of graft success was obtained for the two cultivars on Pinus uncinata and Pinus contorta rootstocks. A later term of grafting procedure affected bigger effectiveness of grafting of the two studied cultivars, except for the graft success on Pinus sylvestris rootstock. The highest increments of side shoots and lengths of main stems for ‘Grześ’ cultivar were obtained on Pinus nigra, and for ‘Zundert’ the influence of the rootstock on the above mentioned parameters was not evident. No significant differences in the number of increments in the first and second year of studies were observed. The highest level of chlorophyll A and B was found in the needles of ‘Grześ’ cultivar, independently from the rootstock used. Among tested rootstocks, only Pinus nigra had a significant impact on a higher content of chlorophyll B in the needles of the studied cultivars of mountain pine trees.


pine, graft success, photosynthesis activity, growth, development of plants

Adams, W.W., Demmig-Adams, B. (1994). Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol. Plant., 92, 451–458. DOI: 10.1111/j.1399-3054.1994.tb08835.x

Ahlgren, C.E., Wilderness, Q.S. (1972). Some effects of inter and intraspecific grafting on growth and flowering of some five-needle pine. Silvae Genet., 21(3/4), 122–126.

Almqvist, C. (2013). Interstock effects on topgraft vitality and strobili production after topgrafting in Pinus sylvestris. Can. J. For. Res., 43(6), 584–588. DOI: 10.1139/cjfr-2012-0507

Arnon, D.J. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, 1–15. DOI: 10.1104/pp.24.1.1

Barnett, J.R., Miller, H. (1994). The effect of applied heat on graft formation in dormant Picea sitchensis (Bong.) Carr. J. Exper. Bot., 45(1), 135–143.

Barnett, J.R., Weatherhead, I. (1989). The effect of scion water potential on graft success in Sitka spruce (Picea sitchensis). Ann. Bot., 64(1), 9–2. DOI: 10.1093/oxfordjournals.aob.a087813

Bärtels, A. (1982). Rozmnażanie drzew i krzewów ozdobnych [Propagation of ornamental trees and shrubs]. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa [in Polish].

Blazich, F.A., Hinesely, L.E. (1994). Propagation of fraser fir. J. Environ. Hort., 12, 112–117.

Bolhàr-Nordenkampf, H.R., Öquist, G. (1993). Chlorophyll fluorescence as a tool in photosynthesis research. In: Photosynthesis and production in a changing environment: a field and laboratory manual, Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (eds.). Chapman and Hall, London, 193–206.

Carter, G.A., Knapp, A.K. (2001). Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot., 88, 677–684.

Colom, M.R., Pini Prato, E., Giannini, R. (2003). Chlorophyll fluorescence and photosynthetic response to light in 1-year-old needles during spring and early summer in Pinus leucodermis. Trees, 17, 207–210. DOI: 10.1007/s00468-002-0222-2

Curran, P.J., Dungan, J.L., Gholz, H.L. (1990). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol., 7, 33–48. DOI: 10.1093/treephys/7.1-2-3-4.33

De-li, S.O.N.G., Shao-ling, J.J., Li-min, Z. (2007). Primary study on survival and growth potential of different grafting methods for Korean pine (J.). J. Jilin For. Sci. Tech., 3:002 [in Chinese].

Filella, I., Serrano, L., Serra, J., Peñuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci., 35, 1400–1405. DOI: 10.2135/cropsci1995.0011183X003500050023x

Frey, H.H., Frampton, J., Blazich, F.A., Hinesley, L.E. (2010). Grafting Fraser Fir (Abies fraseri): effect of grafting date, shade and irrigation. HortScience, 45(4), 617–620. DOI: 10.21273/HORTSCI.45.4.617

Frey, H.H., Frampton, J., Blazich, F.A., Hundley, D., Hinesley, L.E. (2011). Grafting fraser fir (Abies fraseri): effect of scion origin (crown position and branch order). HortScience, 46(1), 91–94. DOI: 10.21273/HORTSCI.46.1.91

Gamon, J.A., Surfus, J.S. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytol., 143, 105–117. DOI: 10.1046/j.1469-8137.1999.00424.x

Grassi, G., Colom, M.R., Minotta, G. (2008). Effects of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-old foliage of Picea abies. Physiol. Plant., 111, 245–254. DOI: 10.1034/j.1399-3054.2001.1110217.x

Haines, R.J., Simpson, J.A. (1994). Scion-rootstock relationships with respect to height growth and foliar concentrations of nitrogen and phosphorus in reciprocal grafts of Pinus caribaea var. Hondurensis. New Forests, 8, 71–79. DOI: 10.1007/BF00034132

Hartmann, H.T., Ester, D.E.K, Avies, F.T. Denever, G. (2011). Hartmann and Kester’s plant propagation: Principles and practices, 8th ed. Pearson, New York, pp. 838.

Hendry, G.A.F., Houghton, J.D., Brown, S.B. (1987). Tansley review no. 11: the degradation of chlorophyll – a biological enigma. New Phytol., 107, 255–302.

Hiscox, J.D., Israelstam, G.F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot., 57, 1332–1334. DOI: 10.1139/b79-163

Holzer, K. (1970). Experments in heteroplastic grafting of Pinus cembra. Silvae Genet., 19, 164–170 [in German].

Hrynkiewicz-Sudnik, J., Sękowski, B., Wilczkiewicz, M. (1999). Rozmnażanie drzew i krzewów nagozalążkowych [Propagation of Gymnosperm Trees and Shrubs]. Wydawnictwo Naukowe PWN, Warszawa [in Polish].

Jayawickrama, K.J.S., Jett, J.B., McKeand, S.E. (1991). Rootstock effects in grafted conifers: a review. New Forest, 5, 157–173. DOI: 10.1007/BF00029306

Jayawickrama, K.J.S., McKeand, S.E., Jett, J.B. (1997). Rootstock effects on scion growth and reproduction i 8-year-old grafted loblolly pine. Can. J. For. Res., 27(11), 1781–1787.

Hinesley, L.E., Frampton, J. (2002). Grafting fraser fir onto rootstock of selected Abies species. HortScience, 37, 815–818. DOI: 10.21273/HORTSCI.37.5.815

Karadeniz, T. (2005). Relationship between graft success and climatic values in walnut (Juglans regia L.) J. Cent. Eur. Agric., 6, 631–634.

Kleinschmidt, J. (1975). Vegetative Vermehrung der Fichte. Mitt. Des Vereins für Forstliche Standortskunde unf Forstpflanzenzüchtung [Vegetative propagation of the spruce]. Mitteilungen 24 [in German].

Larcher, W. (1995). Physiological Plant Ecology, 3rd ed. Springer, Berlin.

Macdonald, B. (1986). Practical woody plant propagation for nursery growers. Timber Press, Portland, Oregon.

Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B. Rakitin, V.Y.U. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant., 106, 135–141. DOI: 10.1034/j.1399-3054.1999.106119.x

Moran, J.A., Mitchell, A.K., Goodmanson, G., Stockburger, K.A. (2000). Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiol., 20, 1113–1120. DOI: 10.1093/treephys/20.16.1113

Mergen, F. (1955). Grafting slash pine in the field and in the greenhouse. J. For., 53, 836–842.

Niinemets, U. (1997). Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Funct. Ecol., 11, 518–531. DOI: 10.1046/j.1365-2435.1997.00109.x

Nowaczyk, N. (2014). Wpływ podkładki i terminu szczepienia na wzrost dwóch odmian sosen [Impact of rootstock and grafting date on the growth of two pine varieties]. Praca inżynierska, UP Poznań.

Oribe, Y., Kubo, T. (1997). Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol., 17, 81–87. DOI: 10.1093/treephys/17.2.81

Oribe, Y., Funada, R., Shibagaki, M., Kubo, T. (2001). Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta, 212, 684–691. DOI: 10.1007/s004250000430

Oribe, Y., Funada, R., Kubo, T. (2003). Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees, 17, 185–192. DOI: 10.1007/s00468-002-0231-1

Ottander, C., Campbell, D., Öquist, G. (1995). Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris. Planta, 197, 176–183. DOI: 10.1007/BF00239954

Oquist, G., Huner, N.P.A. (2003). Photosynthesis of overwintering evergreen plants. Annu. Rev. Plant Biol., 54, 329–355. DOI: 10.1146/annurev.arplant.54.072402.115741

Peñuelas, J., Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci., 3, 151–156.

Rybus-Zając, M. (2005). Oxidative stress generation in Taxus baccata leaves affected by Pestalotiopsis funerea Desm. Under different light conditions. Dendrobiology, 54, 51–56.

Rybus-Zając, M. (2010). Wpływ zwiększonego promieniowania UV-B na poziom barwników chloroplastowych w roślinach cisa pospolitego (Taxus baccata L.) [The influence of enhanced UV-B radiation on the chloroplast pigments level in common yew (Taxus baccata L.) plants]. Nauka Przyr. Technol., 4(3), 38 [in Polish].

Silkina, O.V., Vinokurova, R.I. (2009). Seasonal dynamics of chlorophyll and microelement content in developing conifer needles of Abies sibirica and Picea abies. Russ. J. Plant Physiol., 56, 780–786. DOI: 10.1134/S1021443709060077

Sims, D.A., Gamon, J.A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ., 81, 337–354. DOI: 10.1016/S0034-4257(02)00010-X

Shu, W.B., Liang, Y.Y., Yang, Z.Q., Su, W.B., Liang, X.Z. (2013). The graft technology of high-yield rosin Pinus massoniana seed orchard. J. Fujian For. Sci. Tech, 1, 85–88 [in Chinese].

Schmidtling, R.C. (1983). Rootstock influences flowering, growth and survival of loblolly pine grafts. Forest Sci., 29(1), 117–124.

Steele, M., Gitelson, A.A., Rundquist, D. (2008). Non-destructive estimation of leaf chlorophyll content in grapes. Am. J. Enol. Vitic., 59, 299–305.

Strand, M. (1995). Inhibition of photosynthesis in current year needles unfertilized and fertilized Norway spruce [Picea abies (L.) Karst.] during autumn and early winter. Trees, 9, 332–340. DOI: 10.1007/BF00202497

Valladares, F., Martinez-Ferri, E., Balaguer, L., Perez-Corona, E., Manrique, E. (2000). Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: A conservative resource-use strategy. New Phytol., 148, 79–91.

Uvalle Sauceda, J.I., Gonzalez Rodriguez, H., Ramirez Lozano, R.G., Cantu Silva, I., Gomez Meza, M.V. (2008). Seasonal trends chlorophylls a and b and carotenoids in native trees and shrubs of Northeastern Mexico. J. Biol. Scien., 8(2), 258–267. DOI: 10.3923/jbs.2008.258.267

Welch, H., Haddow, G. (1993). The World Checklist of Conifers. The World Conifer Data Pool.

Wen-Jun, F. (2007). Effect analysis of twig grafting of Pinus taiwanensis. J. Fujian For. Sci. Tech., 4, 95–97 [in Chinese].

Wu, Y.-P., Liang, X., Liu, X.-Y., Zhong, K., Gao, B., Huang, Y.-N., Gao, H. (2015). Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities. J. Func. Foods, 14, 605–612. DOI: 10.1016/j.jff.2015.02.023



Sławomir Świerczyński 
Department of Dendrology, Pomology and Nursery, Poznań University of Life Sciences, Poland
Marcin Kolasiński 
Department of Dendrology, Pomology and Nursery, Poznań University of Life Sciences, Poland
Aleksander Stachowiak 
Department of Dendrology, Pomology and Nursery, Poznań University of Life Sciences, Poland
Magdalena Rybus-Zając 
Department of Plant Physiology, Poznań University of Life Sciences, Poland



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)

1 2 > >>