Krzysztof Klamkowski

Research Institute of Horticulture, Skierniewice

Waldemar Treder

Research Institute of Horticulture, Skierniewice

Katarzyna Wójcik

Research Institute of Horticulture, Skierniewice


Drought is one of the most common limiting environmental factors affecting plant growth and productivity. Strawberry is a plant of large demand for water along with a high susceptibility to drought. In the present study, the response of three strawberry cultivars (‘Elsanta’, ‘Honeoye’, ‘Grandarosa’) grown under greenhouse conditions to water deficiency was examined by evaluating the yield and morphological (leaf and root development) and physiological (leaf gas exchange, leaf water potential) parameters. Plants were subjected to two different water regimes: optimal irrigation (control, water potential in the growing medium was maintained at the level of -10 kPa), and reduced irrigation (stress treatment, water potential in the growing medium was maintained at the level of -30 kPa).
Genotypes differed in their response to water deficiency. Cultivar ‘Elsanta’ presented high rates of net photosynthesis with high value of water use efficiency (a ratio of photosynthetic rate to transpiration rate) under water shortage conditions. Water stress affected plant vigor. The weight and total leaf area of the stressed ‘Honeoye’ plants were considerably reduced as compared to these of the control. No significant differences in weight and root length were observed between the well-irrigated and stressed ‘Elsanta’ plants, while the root development in two other cultivars was retarded. Under water deficiency conditions ‘Elsanta’ gave the highest yield whereas ‘Honeoye’ the lowest. Among examined cultivars, ‘Elsanta’ appeared to be more drought tolerant which was reflected by both growth
and yield parameters.


Fragaria ananassa, photosynthetic rate, transpiration, growth, water stress

Bauhus, J., Messier, C. (1999). Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agron. J., 91, 142–147.
Blanke, M.M., Cooke, D.T. (2004). Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Reg., 42, 153–160.
Bota, J., Flexas, J., Medrano, H. (2001). Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol., 138, 353–361.
Boyer, J.S. (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol., 46, 233–235.
Boyer, J.S. (1982). Plant productivity and environment. Science, 218, 443–448.
Buwalda, J.G., Lenz, F. (1992). Effects of cropping, nutrition and water supply on accumulation and distribution of biomass and nutrients for apple trees on ‘M.9’ root systems. Physiol. Plant., 84, 21–28.
Chandler, C.K., Ferree, D.C. (1990). Response of ‘Raritan’ and ‘Surecrop’ strawberry plants to drought stress. Fruit Var. J., 44, 183–185.
Chaves, M.M., Maroco, J.P., Pereira, J.S. (2003). Understanding plant responses to drought – from genes to the whole plant. Funct. Plant Biol., 30, 239–264.
Escalona, J.M., Flexas, J., Medrano, H. (1999). Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Austr. J. Plant Physiol., 26, 421–433.
Feng, S., Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10081–10094.
Flexas, J., Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot., 89, 183–189.
Flore, J.A., Lakso, A.N., Moon, J.W. (1985). The effect of water stress and vapor pressure gradient on stomatal conductance, water use efficiency, and photosynthesis of fruit crops. Acta Hort., 171, 207–218.
Gehrmann, H. (1985). Growth, yield and fruit quality of strawberries as affected by water supply. Acta Hort., 171, 463–469.
Gehrmann, H., Lenz, F.R. (1991). Wasserbedarf und Einfluß von Wassermangel bei Erdbeere. I. Blattflächenentwicklung und Trockensubstanzverteilung. Erwerbsobstbau, 33, 14–17.
Ghaderi, N., Siosemardeh, A. (2011). Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva). Hort. Environ. Biotechnol., 52, 6–12.
Grant, O.M, Johnson, A.W, Davies, M.J, James, C.M, Simpson, D.W. (2010). Physiological and morphological diversity of cultivated strawberry (Fragaria × ananassa) in response to water deficit. Env. Exp. Bot., 68, 264–272.
Herralde, F. de, Savé, R., Biel, C., Batlle, I., Vargas, F. J. (2001). Differences in drought tolerance in two almond cultivars: ‘Lauranne’ and ‘Masbovera’. Cah. Opt. Méditerran., 56, 149–154.
Hetherington, A.M., Woodward, F.I. (2003). The role of stomata in sensing and driving environmental changes. Nature, 424, 901–908.
Hsiao, T.C. (1973). Plant responses to water stress. Ann. Rev. Plant Physiol., 24, 519–570.
Jarvis, A.J., Mansfield, T.A., Davies, W.J., (1999). Stomatal behaviour, photosynthesis and transpiration under rising CO2. Plant Cell Environ., 22, 639–648.
Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. (2003). Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agric. Forest Meteor., 121, 19–35.
Jorba, J., Tapia, L., Sant, D. (1985). Photosynthesis, leaf water potential and stomatal conductance in Olea europaea under wet and drought conditions. Acta Hort., 171, 237–246.
Kim, S.K., Na, H.Y., Song, J.H., Kim, M.J., Son, J.E., Bae, R.N., Chun, C., Kang, H.J. (2009). Influence of water stress on fruit quality and yield of strawberry cvs. ‘Maehyang’ and ‘Seolhyang’. Acta Hort., 842, 177–180.
Klamkowski, K., Treder, W. (2002). Influence of a rootstock on intensity of transpiration rate and dynamics of changes of an apple tree leader growing under different soil water regimes. J. Fruit Ornam. Plant Res., 10, 31–39.
Klamkowski, K., Treder, W. (2008a). Kalibracja sond pojemnościowych dla wybranych podłoży organicznych i mineralnych. Zesz. Nauk. ISK, 16, 205–211.
Klamkowski, K., Treder, W. (2008b). Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res., 16, 179–188.
Klamkowski, K., Treder, W. (2011). Wpływ deficytu wody na wymianę gazową liści, wzrost i plonowanie dwóch odmian truskawki uprawianych pod osłonami. Infr. Ekol. Ter. Wiej., 5, 105–113.
Liu, F., Savic, S., Jensen, C.R., Shahnazari, A., Jacobsen, S.E., Stikic, R., Andersen, M.N. (2007). Water relations and yield of lysimeter-grown strawberries under limited irrigation. Sci. Hort., 111, 128–132.
Long, S.P., Farage, P.K., Garcia, R.L. (1996). Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot., 47, 1629–1642.
Nautiyal, S., Badola, H.K., Negi, D.S. (1994). Plant responses to water stress: changes in growth, dry matter production, stomatal frequency and leaf anatomy. Biol. Plant., 36, 91–97.
Palliotti, A., Cartechini, A., Nasini, L. (2001). Grapevine adaptation to continuous water limitation during the season. Adv. Hort. Sci., 15, 39–45.
Pietkiewicz, S., Wyszyński, Z., Łoboda, T. (2005). Współczynnik wykorzystania wody buraka cukrowego na tle wybranych czynników agrotechnicznych. Fragm. Agron., 23, 521–529.
Prokic, L., Stikic, R. (2011). Effects of different drought treatments on root and shoot development of the tomato wild type and flacca mutant. Arch. Biol. Sci., 63, 1167–1171.
Sinclair, T.R., Tanner, C.B., Bennett, J.M. (1984). Water-use efficiency in crop production. Bioscience, 34, 36–40.
Singer, S.M., Helmy, Y.I., Karas, A. N., Abou-Hadid, A.F. (2003). Influences of different waterstress treatments on growth, development and production of snap bean (Phaseolus vulgaris L.). Acta Hort., 614, 605–611.
Starck, Z. (1995). Współzależność pomiędzy fotosyntezą i dystrybucją asymilatów a tolerancją roślin na niekorzystne warunki środowiska. Post. Nauk Roln., 3, 19–35.
Starck, Z., Chołuj, D., Niemyska, B. (1995). Fizjologiczne reakcje roślin na niekorzystne czynniki środowiska. Wyd. SGGW, Warszawa.
Treder, W., Klamkowski, K., Tryngiel-Gać, A. (2007). Investigations on greenhouse hydroponic system for production of strawberry potted plantlets. Acta Hort., 761, 115–119.
Treder, W., Klamkowski, K., Krzewińska, D., Tryngiel-Gać, A. (2009). Najnowsze trendy w nawadnianiu upraw sadowniczych – prace badawcze związane z nawadnianiem roślin prowadzone w ISK w Skierniewicach. Infr. Ekol. Ter. Wiej., 6, 95–107.
Treder, W., Klamkowski, K., Tryngiel-Gać, A., Sas, D., Pych, T. (2013). Serwis nawodnieniowy – internetowa platforma wspomagania decyzji związanych z nawadnianiem roślin sadowniczych. Infr. Ekol. Ter. Wiej., 1, 19–30.
Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrig. Sci., 9, 289–308.
Valancogne, C., Dayau, S., Ameglio, T., Archer, P., Daudet, F.A., Ferreira Gama, M.I., Cohen, M. (1997). Relations between relative transpiration and predawn leaf water potential in different fruit tree species. Acta Hort., 449, 423–429.


Krzysztof Klamkowski 
Research Institute of Horticulture, Skierniewice
Waldemar Treder 
Research Institute of Horticulture, Skierniewice
Katarzyna Wójcik 
Research Institute of Horticulture, Skierniewice



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)