The changes in fatty acid profile during senescence and methyl jasmonate-induced senescence of Ginkgo biloba leaves
Henryk Dębski
Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Polandhttps://orcid.org/0000-0002-4145-1102
Joanna Mitrus
Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Polandhttps://orcid.org/0000-0001-8000-5167
Justyna Góraj-Koniarska
The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Polandhttps://orcid.org/0000-0001-7667-0279
Joanna Szablińska-Piernik
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Polandhttps://orcid.org/0000-0003-0265-940X
Marian Saniewski
The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, PolandMarcin Horbowicz
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Polandhttps://orcid.org/0000-0002-1789-4034
Abstract
The present study describes changes in fatty acid (FA) composition in Ginkgo biloba leaves subjected to senescence and to senescence induced by methyl jasmonate (MeJA). Green leaves were treated with MeJA in lanoline on the abaxial or adaxial side of the leaf blades. After three weeks of treatment, leaf blades and petioles were collected separately for FA analyses. Additionally, petioles and leaf blades were sampled for analyses before the experiment and after 6 weeks when leaf senescence was occurring. Linolenic (C18:3) and palmitic (C16:0) acids appeared to be the quantitatively most abundant FA in leaf blades and petioles of G. biloba. Both leaf senescence and that induced by MeJA caused a decrease in unsaturated FA content, especially linolenic (C18:3). However, the decrease in C18:3 acid in both leaf blades and petioles was greater when MeJA was applied to the abaxial side than when it was applied to the adaxial side of leaves or during senescence. At the same time, saturated FA content increased, resulting in a significant decrease in the ratio of total unsaturated to saturated FA. Since leaf fatty acids occur mainly as components of cell membranes, changes in their composition may have a crucial effect on membrane function and stability, as pointed out in the discussion of the results.
Keywords:
Ginkgo biloba, fatty acids, composition, methyl jasmonate, induced senescence, natural senescenceReferences
Ali, M.S., Baek, K.-H. (2020). Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int. J. Mol. Sci., 21, 621. https://doi.org/10.3390/ijms21020621 DOI: https://doi.org/10.3390/ijms21020621
Ananieva, K., Ananiev, E.D., Mishev, K., Georgieva, K., Malbeck, J., Kaminek, M., van Staden, J. (2007). Methyl jasmonate is a more effective senescence-promoting factor in Cucurbita pepo (zucchini) cotyledons when compared with darkness at early stages of senescence. J. Plant Physiol., 164, 1179–1187. https://doi.org/10.1016/j.jplph.2006.07.008 DOI: https://doi.org/10.1016/j.jplph.2006.07.008
Anjum, S.A., Wang, L., Farooq, M., Khan, I., Xue, L. (2011). Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J. Agr. Crop Sci., 197, 296–301. https://doi.org/10.1111/j.1439-037X.2011.00468.x DOI: https://doi.org/10.1111/j.1439-037X.2011.00468.x
Chung, A.-S., Shin, H.-S. (1978). Studies on lipid composition of Ginkgo nut. Korean J. Food Sci. Technol., 10, 119–123.
Czigle, S., Hethelyi, E.B., Haznagy-Radnai, E., Mathe, I., Toth, J. (2019). Analysis of volatile constituents of Ginkgo leaf. Nat. Prod. Commun., 14(6), 1934578X19857900. https://doi.org/10.1177/1934578X19857900 DOI: https://doi.org/10.1177/1934578X19857900
Ghorbel, M., Brini, F., Sharma, A., Landi, M. (2021). Role of jasmonic acid in plants: the molecular point of view. Plant Cell Rep., 40(8), 1471–1494. https://doi.org/10.1007/s00299-021-02687-4 DOI: https://doi.org/10.1007/s00299-021-02687-4
Gomez, R.E., Joubes, J., Valentin, N., Batoko, H., Satiat-Jeunemaitre, B., Bernard, A. (2018). Lipids in membrane dynamics during autophagy in plants. J. Exp. Bot., 69, 1287–1299. https://doi.org/10.1093/jxb/erx392 DOI: https://doi.org/10.1093/jxb/erx392
Griffiths, G. (2020). Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem., 64(3), 501–512. https://doi.org/10.1042/EBC20190085 DOI: https://doi.org/10.1042/EBC20190085
Guo, Y., Ren, G., Zhang, K., Li, Z., Miao, Y., Guo, H. (2021). Leaf senescence: progression, regulation, and application. Mol. Hortic., 1, 5. https://doi.org/10.1186/s43897-021-00006-9 DOI: https://doi.org/10.1186/s43897-021-00006-9
Gülz, P.-G., Müller, E., Schmitz, K., Marner, F.-J., Güth, S. (1992). Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Z. Naturforsch., 47c, 516–526. https://doi.org/10.1515/znc-1992-7-805 DOI: https://doi.org/10.1515/znc-1992-7-805
He, Y., Fukushige, H., Hildebrand, D.F., Gan, S. (2002). Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol., 128, 876–884. https://doi.org/10.1104/pp.010843 DOI: https://doi.org/10.1104/pp.010843
Hodges, D., H. (1997). Involvement of lipid peroxidation in methyl jasmonate-promoted senescence in detached rice leaves. Plant Growth Regul., 24, 17–21. https://doi.org/10.1023/A:1005988727235 DOI: https://doi.org/10.1023/A:1005988727235
Ivanova, A., Ananieva, K., Mishev, K., Ananiev, E.D. (2012). Lipid composition in leaves and cotyledons of Cucurbita pepo L. (zucchini) during natural and induced senescence. Genet. Plant Physiol., 2, 98–106.
Jibran, R., Hunter, D.A., Dijkwel, P.P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol., 82(6), 547–561. https://doi.org/10.1007/s11103-013-0043-2 DOI: https://doi.org/10.1007/s11103-013-0043-2
Koiwai, A., Matsuzaki, T., Suzuki, F., Kawashima, N. (1981). Changes in total and polar lipids and their fatty acid composition in tobacco leaves during growth and senescence. Plant Cell Physiol., 22(6), 1059–1065. https://doi.org/10.1093/oxfordjournals.pcp.a076247 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076247
Lackman, P., González-Guzmán, M., Tilleman, S., Carqueijeiro, I., Pérez, A.C., Moses, T., Seo, M., Kanno, Y., Häkkinen, S.T., Van Montagu. M.C. (2011). Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Nat. Acad. Sci. USA, 108, 5891–5896. https://doi.org/10.1073/pnas.1103010108 DOI: https://doi.org/10.1073/pnas.1103010108
Li, W., Wang, L., He, Z., Lu, Z., Cui, J., Xu, N., Jin B., Wang, L. (2020). Physiological and transcriptomic changes during autumn coloration and senescence in Ginkgo biloba leaves. Hortic. Plant J., 6(6), 396–408. https://doi.org/10.1016/j.hpj.2020.11.002 DOI: https://doi.org/10.1016/j.hpj.2020.11.002
Li, W.-X., Yang, S.-B., Lu, Z., He, Z.-C., Ye, Y.-L., Zhao, B.-B., Wang, L., Jin, B. (2018). Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Hortic. Res., 5, 12. https://doi.org/10.1038/s41438-018-0015-4 DOI: https://doi.org/10.1038/s41438-018-0015-4
Lim, P.O., Kim, H.J., Nam, H.G. (2007). Leaf senescence. Ann. Rev. Plant Biol., 58, 115–136. https://doi.org/10.1146/annurev.arplant.57.032905.105316 DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105316
Liu, J., Wu, Y.H., Yang, J.J., Liu, Y.D., Shen, F.F. (2008). Protein degradation and nitrogen remobilization during leaf senescence. J. Plant Biol., 51(1), 11–19. https://doi.org/10.1007/BF03030735 DOI: https://doi.org/10.1007/BF03030735
MacDonald, G., Lada, R., Caldwell, C., Udenigwe, C., MacDonald, M. (2019). Potential roles of fatty acids and lipids in postharvest needle abscission physiology. Am. J. Plant Sci., 10, 1069–1089. https://doi.org/10.4236/ajps.2019.106078 DOI: https://doi.org/10.4236/ajps.2019.106078
Maltas, E., Vural, H.C., Yildiz, S. (2011). Antioxidant activity and fatty acid composition of Ginkgo biloba from Turkey. J. Food Biochem., 35, 803–818. https://doi.org/10.1111/j.1745-4514.2010.00418.x DOI: https://doi.org/10.1111/j.1745-4514.2010.00418.x
Mishra, S., Sangwan, R.S. (2008). Changes in fatty acid composition of polar lipids associated with growth and senescence in leaves of Catharanthus roseus. Afr. J. Plant Sci., 2(5), 034–037. https://doi.org/10.5897/AJPS.9000040
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9 DOI: https://doi.org/10.1016/S1360-1385(02)02312-9
Mongrand, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., Cassagne, C., Bessoule, J.-J. (2001). Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition. Phytochemistry, 58, 101–115. https://doi.org/10.1016/S0031-9422(01)00139-X DOI: https://doi.org/10.1016/S0031-9422(01)00139-X
Newman, D.W., Rowell, B.W., Byrd, K. (1983). Lipid transformations in greening and senescing leaf tissue. Plant Physiol., 51, 229–233. https://doi.org/10.1104/pp.51.2.229 DOI: https://doi.org/10.1104/pp.51.2.229
Oliw, E.H., Hamberg, M. (2019). Biosynthesis of jasmonates from linoleic acid by the fungus Fusarium oxysporum. Evidence for a novel allene oxide cyclase. Lipids, 54(9), 543–556. https://doi.org/10.1002/lipd.12180 DOI: https://doi.org/10.1002/lipd.12180
Pereira, E., Barros, L., Ferreirra, C.F.R. (2013). Chemical characterization of Ginkgo biloba L. and antioxidant properties of its extracts and dietary supplements. Ind. Crop. Prod., 51, 244–248. https://doi.org/10.1016/j.indcrop.2013.09.011 DOI: https://doi.org/10.1016/j.indcrop.2013.09.011
Procházková, D., Wilhelmová, N. (2007). Leaf senescence and activities of the antioxidant enzymes. Biol. Plant., 51, 401–406. https://doi.org/10.1007/s10535-007-0088-7 DOI: https://doi.org/10.1007/s10535-007-0088-7
Reszczyńska, E., Hanaka, A. (2020). Lipids composition in plant membranes. Cell Biochem. Biophys., 78, 401–414. https://doi.org/10.1007/s12013-020-00947-w DOI: https://doi.org/10.1007/s12013-020-00947-w
Saniewski, M., Dziurka, M., Dziurka, K., Góraj-Koniarska, J., Ueda, J., Miyamoto, K. (2020). Methyl jasmonate induces leaf senescence of Ginkgo biloba L.: relevance to endogenous levels of plant hormones. Plant Growth Regul., 91, 383–396. https://doi.org/10.1007/s10725-020-00612-5 DOI: https://doi.org/10.1007/s10725-020-00612-5
Shi, D., Wei, X., Chen, G., Xu, Y. (2012). Changes in photosynthetic characteristics and antioxidative protection in male and female Ginkgo during natural senescence. J. Am. Soc. Hort. Sci., 137, 349–360. https://doi.org/10.21273/JASHS.137.5.349 DOI: https://doi.org/10.21273/JASHS.137.5.349
Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytol., 197(3), 696–711. https://doi.org/10.1111/nph.12047 DOI: https://doi.org/10.1111/nph.12047
Thompson, J.E., Froese, C.D., Madey, E., Smith, M.D., Hong, Y. (1998). Lipid metabolism during plant senescence. Prog. Lipid Res., 37, 119–141. https://doi.org/10.1016/s0163-7827(98)00006-x DOI: https://doi.org/10.1016/S0163-7827(98)00006-X
Tu, T.T.N., Derenne, S., Largeau, C., Mariotti, A., Bocherens, H. (2001). Evolution of the chemical composition of Ginkgo biloba external and internal leaf lipids through senescence and litter formation. Org. Geochem., 32, 45–55. https://doi.org/10.1016/S0146-6380(00)00152-2 DOI: https://doi.org/10.1016/S0146-6380(00)00152-2
Ueda, J., Kato, J. (1981). Promotive effect of methyl jasmonate on oat leaf senescence in the light. Z. Pflanzenphysiol., 103, 357–359. https://doi.org/10.1016/S0044-328X(81)80134-1 DOI: https://doi.org/10.1016/S0044-328X(81)80134-1
van Beek, T.A., Montoro, P. (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A., 1216, 2002–2032. https://doi.org/10.1016/j.chroma.2009.01.013 DOI: https://doi.org/10.1016/j.chroma.2009.01.013
Wang, S. (1999). Methyl jasmonate reduces water stress in strawberry. J. Plant Growth Regul., 18, 127–134. https://doi.org/10.1007/PL00007060 DOI: https://doi.org/10.1007/PL00007060
Wang, K., Guo, Q., Froehlich, J.E., Hersh, H.L., Zienkiewicz, A., Howe, G.A., Benning, C. (2018). Two abscisic acid-responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell, 30, 1006–1022. https://doi.org/10.1105/tpc.18.00250 DOI: https://doi.org/10.1105/tpc.18.00250
Wasternack, C., Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Ann. Bot., 111(6), 1021–1058. https://doi.org/10.1093/aob/mct067 DOI: https://doi.org/10.1093/aob/mct067
Wasternack, C., Strnad, M. (2018). Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int. J. Mol. Sci., 19, 2539. https://doi.org/10.3390/ijms19092539 DOI: https://doi.org/10.3390/ijms19092539
Wojciechowska, N., Sobieszczuk-Nowicka, E., Bagniewska-Zadworna, A. (2018). Plant organ senescence–regulation by manifold pathways. Plant Biol., 20(2), 167–181. https://doi.org/10.1111/plb.12672 DOI: https://doi.org/10.1111/plb.12672
Yang, Z., Ohlrogge, J.B. (2009).Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis β-oxidation mutants. Plant Physiol., 150(4), 1981–1989. https://doi.org/10.1104/pp.109.140491 DOI: https://doi.org/10.1104/pp.109.140491
Yu, X., Zhang, W., Zhang, Y., Zhang, X., Lang, D., Zhang, X. (2018). The roles of methyl jasmonate to stress in plants. Funct Plant Biol., 46(3), 197–212. https://doi.org/10.1071/FP18106 DOI: https://doi.org/10.1071/FP18106
Zhang, H., Zhou, C. (2013). Signal transduction in leaf senescence. Plant Mol. Biol., 82, 539–545. https://doi.org/10.1007/s11103-012-9980-4 DOI: https://doi.org/10.1007/s11103-012-9980-4
Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland https://orcid.org/0000-0002-4145-1102
Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland https://orcid.org/0000-0001-8000-5167
The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland https://orcid.org/0000-0001-7667-0279
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland https://orcid.org/0000-0003-0265-940X
The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland https://orcid.org/0000-0002-1789-4034
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.
The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.