Extraction and analysis of ruscogenins from butcher’s broom (Ruscus aculeatus L.) rhizomes using HPLC

Magdalena Ewelina Walasek-Janusz

Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin
https://orcid.org/0000-0002-7085-2212

Agnieszka Bajena

Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin

Renata Nurzyńska-Wierdak

Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin
https://orcid.org/0000-0002-9373-4841

Krystyna Skalicka-Woźniak

Department of Natural Products Chemistry, Medical University of Lublin
https://orcid.org/0000-0002-9313-5929


Abstract

Butcher’s broom (Ruscus aculeatus L.) is a plant with valuable chemical composition and many medical applications. The underground rhizomes of the plant contain steroidal saponins, compounds with proven therapeutic effects and used mostly in treating venous insufficiency. The research aimed to optimise the extraction of saponins from butcher’s broom rhizomes to obtain the highest possible content of active compounds in the dry extract. The extraction was carried out in five variants using pure water or a mixture of water and ethanol as solvents in different potions. Three samples of butcher’s broom rhizomes from Albania, Bulgaria, and Germany were examined for the presence of highest level of sapogenin active ingredient. Results show that Albanian sample has the highest percentage of ruscogenins, and hence Albanian butcher’s broom rhizomes were chosen for the extraction of active ingredient by alcoholic solution with different concentration. The sapogenin content in the extracts was determined by the pharmacopoeial method using high performance liquid chromatography (HPLC). A strong, positive correlation was found between ethanol concentration and the content of ruscogenins in the dry extract. The most efficient variant of the extraction turned out to be the use of 50% ethanol as a solvent, where 304 mg of ruscogenins were obtained from 50 g of the raw material.

Keywords:

saponins, extraction, butcher’s broom rhizomes, ruscogenin, neoruscogenin, HPLC

Akbari, S., Abdurahman, N.H., Yunus, R.M. (2019). Optimization of saponins. phenolics. and antioxidants extracted from fenugreek seeds using microwave-assisted extraction and response surface methodology as an optimizing tool. C. R. Chimie, 22, 714–727. https://doi.org/10.1016/j.crci.2019.07.007 DOI: https://doi.org/10.1016/j.crci.2019.07.007

Akbarizare, M., Ofoghi, H., Hadizadeh, M. (2019). In vitro anticancer evaluation of saponins obtained from Spirulina platensis on MDA, HepG2, and MCF7 cell lines. Multidiscip. Cancer Invest., 3(4), 25–32. https://doi.org/10.30699/acadpub.mci.3.4.25 DOI: https://doi.org/10.30699/acadpub.mci.3.4.25

Amid, B.T., Mirhosseini, H. (2012). Effect of different purification techniques on the characteristics of heteropolysaccharide-protein biopolymer from Durian (Durio zibethinus) seed. Molecules, 17(9), 10875–10892. https://doi.org/10.3390/molecules170910875 DOI: https://doi.org/10.3390/molecules170910875

Balica, G., Voștinaru, O., Tămaş, M., Crișan, G., Mogoșan, C. (2013). Anti-inflammatory effect of the crude steroidal saponin from the rhizomes of Ruscus aculeatus L. (Ruscaceae) in two rat models of acute inflammation. J. Food Agric. Environ., 11(3–4), 106–108.

Chudek, J., Ziaja, D. (2017). Wyciąg z ruszczyka kolczastego w leczeniu przewlekłej choroby żylnej [Ruscus aculeatus extract in the therapy of chronić venous disorders]. Chir. Pol., 19, 1–2, 13–17 [in Polish].

Deng, B., Liu, Z., Zou, Z. (2019). Optimization of microwave-assisted extraction saponins from Sapindus mukorossi pericarps and an evaluation of their inhibitory activity on xanthine oxidase. J. Chem., 5204534. https://doi.org/10.1155/2019/5204534 DOI: https://doi.org/10.1155/2019/5204534

De Marino, S., Festa, C., Zollo, F., Iorizzi, M. (2012). Novel steroidal components from the underground parts of Ruscus aculeatus L. Molecules, 17(12), 14002–14014. https://doi.org/10.3390/molecules171214002 DOI: https://doi.org/10.3390/molecules171214002

El Aziz, M.M.A., Ashour, A.S., Melad, A.S.G. (2019). A review on saponins from medicinal plants: chemistry. isolation. and determination. J. Nanomed. Res., 7(4), 282‒288. https://doi.org/10.15406/jnmr.2019.07.00199 DOI: https://doi.org/10.15406/jnmr.2019.07.00199

Espinoza, C.R., Ruiz, C.A.J., Ramos, O.P.F., Solano, M.A.Q, Quiñonez, G.H., Mallma, N.E.S. (2021). Optimization of the ultrasoud-assisted extraction of saponins from quinoa (chenopodium quinoa wild) using response surface methodology. Acta Sci. Pol. Technol. Aliment, 20(1), 17–23. https://doi.org/10.17306/J.AFS.0859 DOI: https://doi.org/10.17306/J.AFS.2021.0859

European Medicines Agency, (2019). Assessment report on Ruscus aculeatus L. rhizoma. EMA/HMPC/188805/2017.

Francis, G., Kerem, Z., Makkar, H.P.S., Becker, K. (2002). The biological action of saponins in animal systems: a review. Brit. J. Nutr., 88, 587–605. https://doi.org/10.1079/BJN2002725. DOI: https://doi.org/10.1079/BJN2002725

Ghorbani, S., Sonboli, A., Ebrahimi, S.N., Mirjalili, M.H. (2020). Molecular authentication and phytochemical assessment of Ruscus hyrcanus Woron. (Asparagaceae) based on trnH- psbA barcoding and HPLC-PDA analysis. Biocat. Agric. Biotechnol., 25. https://doi.org/10.1016/j.bcab.2020.101585 DOI: https://doi.org/10.1016/j.bcab.2020.101585

Güçlü-Üstündağ, Ö., Mazza, G. (2007). Saponins: properties. Applications and processing. Crit. Rev. Food Sci. Nutr., 47(3), 231–258. https://doi.org/10.1080/10408390600698197 DOI: https://doi.org/10.1080/10408390600698197

Hadžifejzović, N., Kukić-Marković, J., Petrović, S., Soković, M., Glamočlija, J., Stojković, D., Nahrstedt, A. (2013). Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L. Ind. Crops Prod., 49, 407–411. https://doi.org/10.1016/j.indcrop.2013.05.036 DOI: https://doi.org/10.1016/j.indcrop.2013.05.036

Ivanova, T., Dimitrova, D., Gussev, C., Bosseva, Y., Stoeva, T. (2015). Ex situ conservation of Ruscus aculeatus L. ruscogenin biosynthesis. genome-size stability and propagation traits of tissue-cultured clones. Biotechnol. Biotechnol. Equip., 29(1), 27–32. http://dx.doi.org/10.1080/13102818.2014.984976 DOI: https://doi.org/10.1080/13102818.2014.984976

Ivanova, T., Banciu, C., Gussev, C.,Bosseva, Y., Dimitrova, D., Stoeva, T., Manole, A. (2019). Dynamics of the ruscogenin biosynthesis in Ruscus aculeatus L. (Liliaceae) in vitro cultures. Rom. Biotechnol. Lett., 24(2), 354–359. https://doi.org/10.25083/rbl/24.2/354.359 DOI: https://doi.org/10.25083/rbl/24.2/354.359

Kite, G.C., Porter, E.A., Simmonds, M.S.J. 2007. Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A., 1148(2), 177–183. https://doi:10.1016/j.chroma.2007.03.012 DOI: https://doi.org/10.1016/j.chroma.2007.03.012

Le, A.V., Parks, S.E., Nguyen, M.H., Roach, P.D. (2018). Optimization of the microwave-assisted ethanol extraction of saponins from gac (Momordica cochinchinensis Spreng.) seeds. Medicines, 5(3), 70. https://doi.org/10.3390/medicines5030070 DOI: https://doi.org/10.3390/medicines5030070

Masullo, M., Pizza, C., Piacente S. (2016). Ruscus genus: a rich source of bioactive steroidal saponins. Planta Med., 82(18), 1513–1524. http://dx.doi.org/10.1055/s-0042-119728 DOI: https://doi.org/10.1055/s-0042-119728

Ozer, G., Guzelmeric, E., Sezgin, G., Ozyurek, E., Arslan, A., Sezik, E., Yesilada, E. (2018). Comparative determination of ruscogenins content in Butcher’s Broom rhizome samples gathered from the populations grown in different soil conditions in the Marmara Region and attempts for pilot field cultivation of rhizomes. J. Chem. Metrol., 12(1), 79–88. http://doi.org/10.25135/jcm.17.18.05.094 DOI: https://doi.org/10.25135/jcm.17.18.05.094

Polish Pharmacopoeia XI [Farmakopea Polska XI], (2017). Kłącze ruszczyka [Ruscus aculeatus] 01/2017:1847. Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych [Office for Registration of Medicinal Products, Medical Devices and Biocidal Products]. Warsaw [in Polish].

Raposo, A., Saraiva, A., Ramos, F., Carrascosa, C., Raheem, D., Bárbara, R., Silva, H. (2021). The role of food supplementation in microcirculation – a comprehensive review. Biology, 10(7), 616. https://doi.org/10.3390/biology10070616 DOI: https://doi.org/10.3390/biology10070616

Rodrigues, J.P.B., Fernandes, A., Dias, M.I., Pereira, C., Pires, T.C.S.P., Calhelha, R.C., Carvalho, A.M., Ferreira, I.C.F.R., Barros, L. (2021). Phenolic compounds and bioactive properties of Ruscus aculeatus L. (Asparagaceae): The pharmacological potential of an underexploited subshrub. Molecules, 26(7), 1882. https://doi.org/10.3390/molecules26071882 DOI: https://doi.org/10.3390/molecules26071882

Schwarz, M.W. (2000). Saponins. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley‐VCH, 177–191. DOI: https://doi.org/10.1002/14356007.a23_485

Tansi, S., Kokdil, G., Karaman, S., Toncer, O., Yilmaz, H. (2007). Variation in ruscogenin contents in Ruscus aculeatus L. growing wild in Southern Turkey. Asian J. Chem., 19(4), 3015–3022.

Taşkın, T., Güler, E., Şahin, T., Bulut, G. (2020). Enzyme inhibitory and antioxidant activities of different extracts from Ruscus aculeatus L. Acta Pharm. Sci., 58(4). https://doi.org/10.23893/1307-2080.APS.05828 DOI: https://doi.org/10.23893/1307-2080.APS.05828

Thomas, P.A., Mukassabi, T.A. (2014). Biological flora of the British Isles: Ruscus aculeatus. J. Ecol., 102(4), 1083–1100. https://doi.org/10.1111/1365-2745.12265 DOI: https://doi.org/10.1111/1365-2745.12265

Tomkowski, W.Z. (2014). Leczenie przewlekłej niewydolności żylnej za pomocą połączenia Ruscus aculeatus, metylochalkonu hesperydyny i kwasu askorbinowego – przegląd piśmiennictwa [Treatment of venous insufficiency with Ruscus aculeatus, hesperidin methylchalcone and ascorbic acid – review article. Acta Angiol., 20(3), 106–111 [in Polish].

Urbanek, T. (2017). The clinical efficacy of Ruscus aculeatus extract: is there enough evidence to update the pharmacotherapy guidelines for chronic venous disease? Phlebol. Rev., 25(1), 75–80. https://doi.org/10.5114/pr.2017.70594 DOI: https://doi.org/10.5114/pr.2017.70594

Wang, G., Wang, J., Liu, W., Nisar, M.F., El-Esawi, M.A., Wan. C. (2021). Biological activities and chemistry of triterpene saponins from Medicago species: evidence-based complementary and alternative medicine. 6617916. https://doi.org/10.1155/2021/6617916 DOI: https://doi.org/10.1155/2021/6617916

Download

Published
2022-12-30



Magdalena Ewelina Walasek-Janusz 
Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin https://orcid.org/0000-0002-7085-2212
Agnieszka Bajena 
Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin
Renata Nurzyńska-Wierdak 
Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin https://orcid.org/0000-0002-9373-4841
Krystyna Skalicka-Woźniak 
Department of Natural Products Chemistry, Medical University of Lublin https://orcid.org/0000-0002-9313-5929



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

<< < 1 2 3 4 > >>