Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 77 Nr 4 (2022)

Artykuły

Ocena plonowania i zachwaszczenia mieszanek grochu siewnego z pszenżytem jarym uprawianych na zieloną masę w rolnictwie zrównoważonym

DOI: https://doi.org/10.24326/as.2022.4.9
Przesłane: 15 września 2022
Opublikowane: 25-01-2023

Abstrakt

The paper presents the results of a 2016–2018 study to determine the effect of the share of components in the mixture and the harvest date on the weed infestation and yield of mixtures of field pea with spring triticale. Two factors were studied in the experiment: the proportion of components in the mixture: field pea – clean sowing 100%, spring triticale – clean sowing 100%,  field pea 75% + spring triticale 25%, field pea 50% + spring triticale 50%, field pea 25% + spring triticale 75%; harvesting date: flowering stage of field pea (BBCH 65), flat green pod stage of field pea (BBCH 79). The results obtained allow us to conclude that the cultivation of pea in mixed sowings with spring triticale reduces the weed infestation in the canopy compared to pea grown in pure sowing. The highest fresh matter yield was obtained from the mixture of field pea and spring triticale with 50% share of both components, harvested at the stage of flat green pod of field pea.

Bibliografia

  1. Ajal J., Jäck O., Vico G., Weih M., 2021. Functional trait space in cereals and legumes grown in pure and mixed cultures is influenced more by cultivar identity than crop mixing. Perspect. Plant Ecol. Evol. Syst. 50, 125612. https://doi.org/10.1016/j.ppees.2021.125612 DOI: https://doi.org/10.1016/j.ppees.2021.125612
  2. Arlauskienė A., Šarūnaitė L., Deveikytė I., Kadžiulienė Ž., Maikštėnienė S., 2014. Suppression of annual weeds in pea and cereal intercrops as influenced by different growing conditions. Agron. J. 106(5), 1765–1774. https://doi.org/10.2134/agronj13.0478 DOI: https://doi.org/10.2134/agronj13.0478
  3. Amini E., Taab A., Radicetti E., 2021. Evaluation the effect of wheat intercropping with bitter vetch and grass pea on weed diversity and density under different soil tillage systems. J. Plant Prot. 35(2), 231−250. https://doi.org/10.22067/JPP.2021.68035.1004
  4. Alatürk F., 2020. Effects of mixture types and ratios in Hungarian vetch-cereal intercropping system on plant development and soil C/N ratios. Comu. J. Agric. Fac. 8(1), 203–211. https://doi.org/10.33202/comuagri.687901 DOI: https://doi.org/10.33202/comuagri.687901
  5. Ascı O.O., Acar Z., 2019. Weed control in organic roughage production. Turk. J. Agric. Res. 6(1), 115–122. https://doi.org/10.19159/tutad.475123 DOI: https://doi.org/10.19159/tutad.475123
  6. Bailey-Elkin W., Carkner M., Entz, M.H., 2021. Intercropping organic field peas with barley, oats, and mustard improves weed control but has variable effects on grain yield and net returns. Can. J. Plant Sci. 102(3), 515–528. https://doi.org/10.1139/cjps-2021-0182 DOI: https://doi.org/10.1139/cjps-2021-0182
  7. Bàrberi P., Bocci G., Carlesi S., Armengot L., Blanco-Moreno J.M., Sans F.X., Storkey J., 2018. Linking species traits to agroecosystem services: a functional analysis of weed communities. Weed Res. 58(2), 76–88. https://doi.org/10.1111/wre.12283 DOI: https://doi.org/10.1111/wre.12283
  8. Bojarszczuk J., Księżak J., Staniak M., 2017. Evaluation of weed infestation of triticale and pea mixtures grown for fodder seeds. J. Res. Appl. Agric. Eng. 62(3), 42–48.
  9. Bouhaouel I., Gfeller A., Fauconnier M.L., Rezgui S., Slim Amara H., du Jardin P., 2015. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl 60, 425–436. https://doi.org/10.1007/s10526-014-9634-3 DOI: https://doi.org/10.1007/s10526-014-9634-3
  10. Carton N., Naudin C., Piva G., Corre-Hellou G., 2020. Intercropping winter lupin and triticale increases weed suppression and total yield. Agriculture 10(8), 316. https://doi.org/10.3390/agriculture10080316 DOI: https://doi.org/10.3390/agriculture10080316
  11. Délye C., Jasieniuk M., Le Corre V., 2013. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29(11), 649–658. https://doi.org/10.1016/j.tig.2013.06.001 DOI: https://doi.org/10.1016/j.tig.2013.06.001
  12. Gecaitė V., Arlauskienė A., Cesevičienė J., 2021. Competition effects and productivity in oat–forage legume relay intercropping systems under organic farming conditions. Agriculture 11(2), 99. https://doi.org/10.3390/agriculture11020099 DOI: https://doi.org/10.3390/agriculture11020099
  13. Harker K.N., 2001. Survey of yield losses due to weeds in central Alberta. Can. J. Plant Sci. 81(2), 339–342. https://doi.org/10.4141/P00-102 DOI: https://doi.org/10.4141/P00-102
  14. Idziak R., Michalski T., 2003. Zachwaszczenie i plonowanie mieszanek jęczmienia jarego i owsa przy różnym udziale obu komponentów w zasiewie. Zesz. Probl. Post. Nauk Roln. 490, 99–104.
  15. Jäck O., Ajal J., Weih M., 2021. Altered nitrogen availability in pea-barley sole- and intercrops changes dominance of two nitrophilic weed species. Agronomy 11(4), 679. https://doi.org/10.3390/agronomy11040679 DOI: https://doi.org/10.3390/agronomy11040679
  16. Kir H., Yilar M., Yavuz T., 2022. Comparison of alternative sowing methods in hungarian vetch and triticale cultivation in terms of yield and weed biomass. Gesunde Pflanz. 1–8. https://doi.org/10.1007/s10343-022-00696-1 DOI: https://doi.org/10.1007/s10343-022-00696-1
  17. Kotecki A. (red.), 2014. Współrzędna uprawa bobiku i łubinu żółtego z pszenżytem jarym. Wyd. UP Wrocław, ss. 104.
  18. Krga İ., Sımıć A., Mandıć V., Bıjelıć Z., Dželetovıć Ž., Vasıljevıć S., Adžıć S., 2019. Forage yield and protein content of different field pea cultivars and oat mixtures grown as winter crops. Turkish J. Field Crop. 24(2), 170–177. https://doi.org/10.17557/tjfc.643524 DOI: https://doi.org/10.17557/tjfc.643524
  19. Krga I., Simić A., Dželetović Ž., Babić S., Katanski S., Nikolić S.R., Damnjanović J., 2021. Biomass and protein yields of field peas and oats intercrop affected by sowing norms and nitrogen fertilizer at two different stages of growth. Agriculture 11(9), 871. https://doi.org/10.3390/agriculture11090871 DOI: https://doi.org/10.3390/agriculture11090871
  20. Lejman A., Sobkowicz P., Ogórek R., 2017. Różnorodność gatunkowa chwastów w mieszance jęczmienia z grochem w zależności od sposobu regulacji zachwaszczenia. Fragm. Agron. 34(4), 105–116.
  21. Li X., Wang Z., Bao X., Sun J., Yang S., Wang P., Wang C., Wu J., Liu X., Tian X., Wang Y., Li J., Wang Y., Xia H., Mei P., Wang X., Zhao J., Yu R., Zhang W., Che Z., Gui L., Callaway R.M., Tilman D., Li L., 2021. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 4, 943–950. https://doi.org/10.1038/s41893-021-00767-7 DOI: https://doi.org/10.1038/s41893-021-00767-7
  22. Li B., Liu X., Xu X., Zhao B., Li Z., 2022. Weed suppression and plant interaction in foxtail millet and mung bean intercropping system. For. Chem. Rev. 575–586.
  23. Little N., DiTommaso A., Westbrook A., Ketterings Q., Mohler C., 2021. Effects of fertility amendments on weed growth and weed–crop competition: A review. Weed Sci. 69(2), 132–146. https://doi.org/10.1017/wsc.2021.1 DOI: https://doi.org/10.1017/wsc.2021.1
  24. MacLaren C., Storkey J., Menegat A., Metcalfe H., Dehnen-Schmutz K., 2020. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 40(24), 1–29. https://doi.org/10.1007/s13593-020-00631-6 DOI: https://doi.org/10.1007/s13593-020-00631-6
  25. Nath C.P., Das T.K., Rana K.S., Bhattacharyya R., Pathak H., Paul S., Meena M.C., Singh S.B., 2017. Weed and nitrogen management effects on weed infestation and crop productivity of wheat–mungbean sequence in conventional and conservation tillage practices. Agric. Res. 6, 33–46. https://doi.org/10.1007/s40003-017-0246-x DOI: https://doi.org/10.1007/s40003-017-0246-x
  26. Ogórek R., Lejman A., Sobkowicz P., 2019. Effect of the intensity of weed harrowing with spike-tooth harrow in barley-pea mixture on yield and mycobiota of harvested grains. Agronomy 9(2), 103. https://doi.org/10.3390/agronomy9020103 DOI: https://doi.org/10.3390/agronomy9020103
  27. Płaza A., Gąsiorowska B., Cybulska A., Rzążewska E., Górski R., 2018. Zachwaszczenie i plonowanie mieszanek łubinu wąskolistnego z żytem jarym uprawianych na zieloną masę. Prog. Plant Prot. 58(4), 241–246. https://doi.org/10.14199/ppp-2018-032 DOI: https://doi.org/10.14199/ppp-2018-032
  28. Saucke H., Ackermann K., 2006. Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Res. 46(6), 453–461. https://doi.org/10.1111/j.1365-3180.2006.00530.x DOI: https://doi.org/10.1111/j.1365-3180.2006.00530.x
  29. Šarūnaitė L., Deveikytė I., Arlauskienė A., Kadžiulienė Ž., Maikštėnienė S., 2013. Pea and spring cereal intercropping systems: advantages and suppression of broad-leaved weeds. Pol. J. Environ. Stud. 22(2), 541–551.
  30. Sobkowicz P., Tendziagolska E., 2022. The effect of timing and intensity of weed harrowing in triticale-lupin mixture on weeds and crops. Agric. Food Sci. 31(1), 12–23. https://doi.org/10.23986/afsci.113476 DOI: https://doi.org/10.23986/afsci.113476
  31. Spies J.M., Warkentin T., Shirtliffe S., 2010. Basal branching in field pea cultivars and yield-density relationships. Can. J. Plant Sci. 90(5), 679–690. https://doi.org/10.4141/CJPS09195 DOI: https://doi.org/10.4141/CJPS09195
  32. Staniak M., Bojarszczuk J., Księżak J., 2014. The assessment of weed infestation of oats-pea mixtures grown in organic farm. J. Res. Appl. Agric. Eng. 59(4), 83–88.
  33. Tuna C., Orak A., 2007. The role of intercropping on yield potential of common vetach (Vicia sativa L.)/oat (Avena sativa L.) cultivated in pure stand and mixtures. J. Agric. Biol. Sci. 2(2), 14–19.
  34. Wang Z., Jiang H., Shen Y., 2020. Forage production and soil water balance in oat and common vetch sole crops and intercrops cultivated in the summer-autumn fallow season on the Chinese Loess Plateau. Eur. J. Agron. 115, 126042. https://doi.org/10.1016/j.eja.2020.126042 DOI: https://doi.org/10.1016/j.eja.2020.126042
  35. Wojciechowski W., Kozak M., Białkowska M., Ćwiertniewska M., 2013. Wpływ mieszanek strączkowo-zbożowych na zachwaszczenie łanu. Prog. Plant Prot. 53(1), 110–114.
  36. Yu R.P., Yang H., Xing Y., Zhang W.P., Lambers H., Li L., 2022. Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil 476, 1–26. https://doi.org/10.1007/s11104-022-05487-1 DOI: https://doi.org/10.1007/s11104-022-05487-1

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.