Skip to main navigation menu Skip to main content Skip to site footer

Vol. 16 No. 4 (2017)

Articles

VARIABILITY OF PHENOLIC COMPOUNDS OF FOUR AROMATIC Lamiaceae SPECIES IN CONSEQUENCE OF DIFFERENT WATER SUPPLY

Submitted: October 20, 2020
Published: 2017-08-31

Abstract

The reactions of lemon balm, marjoram, peppermint, thyme were investigated and compared in a pot experiment, adjusting 70% and 40% of soil water capacity (SWC). Biomass, total phenolic content (TPC), rosmarinic acid content (RA) and antioxidant capacity (FRAP, DPPH) of both the shoots and roots were measured. As an universal phenomenon the water stress (40% SWC) decreased the total biomass production of all species drastically. The highest increase was observed in the shoot mass of peppermint and lemon balm (decreased from 52.6 g·plant–1 to 11.3 g·plant–1 and from 236.8 g·plant–1 to 58 g·plant–1, respectively). The reaction of marjoram was much more moderate. The accumulation level of TPC was accelerated in the aboveground parts of the studied species, universally. The reactions in the roots were less characteristic. The largest increase of TPC was measured in the shoots of lemon balm (from 359.015 mg GAE· g–1 d.w. up to 412.44 GAE·g–1 d.w.). The reaction of marjoram was the less characteristic in this respect, as well. The parallel changes of biomass and TPC level might allow the total phenolic content to function as an adequate marker in predicting the lack of appropriate water supply. RA content showed species characteristics. Thyme, marjoram and peppermint reacted by a significant elevation (by 23–127%) of the RA content to the lack of water. The highest proportions were accumulated in shoots of the stressed thyme plants (3.45% d.w.).

References

Alavi-Samani, S.M., Pirbalouti, A.G., Kachouei, M.A., Hamdi, B. (2013). The influence of reduced irrigation on herbage, essential oil yield and quality of Thymus vulgaris and Thymus daenensis. J. Herbal Drugs, 4, 109–113.
Areiras, F.M., Valentao, P., Andrade, P.B., Ferreres, F., Seabra, R.M. (2001). Phenolic fingerprint of peppermint leaves. Food Chem., 73, 307–311.
Aziz, E.E., Hendawy, S.F., E-Din, A.A., Omer, E.A. (2008). Effect of soil type and irrigation intervals on plant growth, essential oil yield, and constitents of Thymus vulgaris plant. Am. Eurasian. J. Agric. Envi-ron. Sci., 4, 443–450.
Alizadeh, A., Khosh-Kui, M., Javidnia, K., Fituzi, O., Jokkar, S.M. (2011). Chemical composition of the essential oil, total phenolic content and antioxidant activity in Origanum majorana L. (Lamiaceae) cultivated in Iran. Adv. Environ. Biol., 5(8), 2326–2331.
Bahreininejad, B., Razmjoo, J., Mirza, M. (2014). Effect of water stress on the productivity and essential oil content and composition of Thymus carmanicus. TEOP, 17(5), 717–725.
Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant pow-er”: the FRAP assay. Anal. Biochem., 239, 70–76.
Brand-Williams, W., Cuvlier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 28, 25–30.
Carnat, A.P., Carnat, A., Fraisse, D., Lamaison, J.L. (1998). The aromatic and polyphenolic composition of lemon balm (Melissa officinalis L. subsp. officinalis) tea. Pharm. Acta Helv., 71, 301–305.
Dastmalchi, K., Dorman, H.J.D., Oinonen, P.P., Darwis, Y., Laakso, I., Hiltunen, R. (2008). Chemical composition and in vitro antioxidative activity of lemon balm (Melissa officinalis L.) extract. LWT, 41, 391–400.
Derakshani, Z., Hassani, A., Pirzad, A., Abdollahi, R., Dalkani, M. (2012). Evaluation of phenolic content and antioxidant capacity in some medicinal herbs cultivated in Iran. Bot. Serb., 36(2), 117–122.
Dixon, R.A., Paiva, N.L. (1995). Stress-induced phe-nylpropanoid metabolism. Plant Cell, 7, 1085–1097.
Fecka, I., Turek, S. (2008). Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: thyme, wild thyme and sweet marjoram by gas-chromatographic techniques. Food Chem., 108, 1039–1053.
Fialova, S., Tekelová, D., Grancai, D. (2012). The content of phenolic compounds in underground and aerial parts of different Mentha species. Acta Fac. Pharm. Univ. Comen., 59, 30–37.
Guédon, D.J., Pasquier, B.P. (1994). Analysis and distribution of flavonoid glycosides and rosmarinic acid in 40 Mentha × piperita clones. J. Agric. Food Chem., 42(3), 679–684.
Hoppe, B. (2013). Handbuch des Arznei- und Gewürzpflanzenbaus, Bd 5. Eigenverlag Verein Für Arznei- und Ge-würzpflanzen Saluplanta e.V., Bernburg, 83–105.
Janicsák, G., Máthé, I., Miklóssy-Vári, V., Blunden, G. (1999). Comparative studies of the rosmarinic and caf-feic acid contents of Lamiaceae species. Biochem. Syst. Ecol., 27, 733–738.
Khazaie, H.R., Nadjafi, F., Bannayan, M. (2008). Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). Ind. Crop Prod., 27, 315–321.
Khosh-Khui, M., Ashiri, F., Saharkhiz, M.J. (2012). Effects of irrigation regimes on antioxidant activity and total phenolic content of thyme (Thymus vulgaris L.). Med. Aromat. Plants, 1, 114.
Manukyan, A. (2011). Effect of growing factors on produc-tivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production. I. Drought stress. Med. Aromat. Plant. Sci. Biotechnol., 5, 119–125.
Maraghni, M., Gorai, M., Neffati, M., Van Labeke, M.C. (2014). Differential responses to drought stress in leaves and roots of wild jujube, Ziziphus lotus. Acta Physiol. Plant, 36(4), 945–953.
Mekinic, I.G., Crmaric, M., Skroza, D., Burcul, F., Blazevic, I., Katalinic, V. (2013). Rosmarinic acid-biologically active compound of Lamiaceae plants. Pro-ceedings of the 24th International Scientific-Expert-Conference of Agriculture and Food Industry, Saraje-vo, Bosnia and Herzegovina, 25–28 September 2013, 254–259.
Melissa (2007). In: Herbal Medicines, Barnes, J., Ander-son, L.A., Phillipson, J.D. (eds). 3 ed., Pharmaceutical Press, London, 425.
Mimica-Dukic, N., Bozin, B. (2008). Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr. Pharm. Design, 14, 3141–3150.
Pank, F. (1990). Empfelungen und Richtwerte für die Beregnung von Arznei- und Gewürzpflanzen. Feld-wirtschaft, 31(5), 213–215.
Penka, M. (1978). Influence of irrigation on the contents of effective substances in officinal plants, Acta Hortic., 73, 181–197.
Pluhár, Zs., Sárosi, Sz., Novák, I., Kutta, G. (2008). Essential oil polymorphism of Hungarian common thyme (Thymus glabrescens Willd.) populations. Nat. Prod. Commun., 3, 1151–1154.
Reynolds, S.G. (1970). The gravimetric method of soil moisture determination. I. A study of equipment, and methodological problems. J. Hydrol., 11(3), 258–273.
Roby, M.H.H., Sarhan, M.A., Selim, K.A.H., Khalel, K.I. (2013). Evaluation of antioxidant activity, total phenols
and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.) and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod., 43, 827–831.
Rusaczonek, A., Zebrowska, M., Waszkiewicz-Robak, B., Slusarczyk, E. (2007). Evaluation of phenolic compounds content and antioxidant capacity of herbs. Pol. J. Food Nutr. Sci., 57, 483–488.
Sellami, I.H., Maamouri, E., Chahed, T., Wannes, W.A., Kchouk, M.E., Marzouk, B. (2009). Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Ind. Crop Prod., 30, 395–402.
Singleton, V.L., Rossi, J.A. (1965). Colometric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16. 144–158.
Staniak, M., Kocon, A. (2015). Forag grasses under drought stress in conditions of Poland. Acta Physiol. Plant, 37, 116.
Treutter, D. (2010). Managing phenol contents in crop plants by phytochemical farming and breeding. Visions and constraints. Int. J. Mol. Sci., 11, 807–857.
Zámbori-Németh, É., Tétényi, P. (1986). The effect of the soil type and water supply on the development and tillering of the peppermint. Herba Hung., 25(3), 55–71.
Zámbori-Németh, É., Tanító, G., Novák, I., Rajhárt, P. (2005). Optimalisation of cultivation of medicinal plants in consequence of climate change (In Hungarian). ‘Agro-21-VAHAVA project’ Series, No. 42. Hungarian Scientific Academie, ‘AgroA 21’ Project Bureau, Budapest, 158–168.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.