Abstract
Many studies have confirmed positive effect of biochar as a soil conditioner that can increase in a short time the amount of organic matter (SO) and the reserves of organic carbon (OC) in the soil. The use of biochar also contributes to eliminating the effects of soil fatigue, especially in perennial fruit crops. In our study, biochar was applied in the spring of 2014 in the cultivation of one-year-old peach trees of the cultivar Meredith. Biochar, an organic fertilizer, and microbiologically enriched compost were applied to the arable soil layer. In the experiment, three combinations with biochar were used: (1) biochar at 1.6 kg/tree, (2) biochar at 1.6 kg/tree + microbiologically enriched compost at 0.3 kg/tree, (3) biochar at 1.6 kg/tree + an organic fertilizer at 0.2 kg/tree. In the first growing season, no positive changes were found after the use of biochar. The highest number and yield of fruits in 2015 were obtained from the trees that were treated with microbiologically enriched compost, and the lowest in the combination where biochar + organic fertilizer were used to treat the peach trees. In 2016, the largest number of fruits and their greatest weight were recorded for the trees treated with biochar + organic fertilizer, whereas the control trees produced the lowest yields. The use of biochar with microorganisms and biochar with organic fertilizer improved the vegetative growth of trees compared to the growth of control trees.
References
- Abujabhah, I.S., Bound, S.A., Doyle, R., Bowman, J.P. (2016). Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol., 98, 243–253. https://doi.org/10.1016/j.apsoil.2015.10.021
DOI: https://doi.org/10.1016/j.apsoil.2015.10.021
- Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202–203, 183–191. https://doi.org/10.1016/j.geoderma.2013.03.003
DOI: https://doi.org/10.1016/j.geoderma.2013.03.003
- Ahmed, A., Gariepy, Y., Raghavan, V. (2017). Influence of wood-derived biochar on the compactibility and strength of silt loam soil. Int. Agrophys., 31, 149–155. http://dx.doi.org/10.1515/intag-2016-0044
DOI: https://doi.org/10.1515/intag-2016-0044
- Andrenelli, M.C., Maienza, A., Genesio, L., Miglietta, F., Pellegrini, S., Vaccari F.P., Vignozzi N. (2016). Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil. Agric. Water Manag., 163, 190–196. https://doi.org/10.1016/j.agwat.2015.09.017
DOI: https://doi.org/10.1016/j.agwat.2015.09.017
- Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: review. Plant Soil, 337, 1–18.
DOI: https://doi.org/10.1007/s11104-010-0464-5
- Atucha, A., Litus, G. (2015). Effect of biochar amendments on peach replant disease. HortScience, 50(6), 863–868. https://doi.org/10.21273/HORTSCI.50.6.863
DOI: https://doi.org/10.21273/HORTSCI.50.6.863
- Bayabil, H.K., Stoof, C.R., Lehmann, J.C., Yitaferu, B., Steenhuis, T.S. (2015). Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed. Geoderma, 243–244, 115–123. https://doi.org/10.1016/j.geoderma.2014.12.015
DOI: https://doi.org/10.1016/j.geoderma.2014.12.015
- Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Sci. Soc. Am. J., 81, 687–711. https://doi.org/10.2136/sssaj2017.01.0017
DOI: https://doi.org/10.2136/sssaj2017.01.0017
- Bridgwater, A.V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J., 91, 87–102. https://doi.org/10.1016/S1385-8947(02)00142-0
DOI: https://doi.org/10.1016/S1385-8947(02)00142-0
- Castellini, M., Giglio, L., Niedda, M., Palumbo, A.D., Ventrella, D. (2015). Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Till. Res., 154, 1–13. https://doi.org/10.1016/j.still.2015.06.016
DOI: https://doi.org/10.1016/j.still.2015.06.016
- Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Austral. J. Soil Res., 45, 629–634. https://doi.org/10.1071/SR07109
DOI: https://doi.org/10.1071/SR07109
- Elmer W.H., Pignatello J.J., (2011). Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis., 95, 960–966. https://doi.org/10.1094/PDIS-10-10-0741
DOI: https://doi.org/10.1094/PDIS-10-10-0741
- Farrell, M., Kuhn, T.K., Macdonald, L.M., Maddern, T.M., Murphy, D.V., Hall, P.A., Singh, B.P., Baumann, K., Krull, E.S., Baldock, J.A. (2013). Microbial utilisation of biochar-derived carbon. Sci. Total Environ., 465, 288–297. https://doi.org/10.1016/j.scitotenv.2013.03.090
DOI: https://doi.org/10.1016/j.scitotenv.2013.03.090
- Gale, N.V., Thomas, S.C. (2019). Dose-dependence of growth and ecophysiological responses of plant to biochar. Sci. Total Environ., 658, 1344–1354. https://doi.org/10.1016/j.scitotenv.2018.12.239
DOI: https://doi.org/10.1016/j.scitotenv.2018.12.239
- Glaser, B., Lehmann, J., Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal. A review. Biol. Fertil. Soils, 35, 219–230.
DOI: https://doi.org/10.1007/s00374-002-0466-4
- Głuszek, S., Sas-Paszt, L., Sumorok, B., Kozera, R. (2017). Biochar-rhizosphere interactions – a review. Pol. J. Microbiol., 66(2), 151–161.
DOI: https://doi.org/10.5604/01.3001.0010.4361
- Gonzaga, M.I.S., Mackowiak, C., Quinatao de Almeida, A., Tinel de Carvalho, J.I., Jr., Andrade, K.R., (2018). Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena, 162, 414–420. https://doi.org/10.1016/j.catena.2017.10.018
DOI: https://doi.org/10.1016/j.catena.2017.10.018
- Hansen, V., Nielsen, H.H., Petersen, C.T., Mikkelsen, T.N., Stover, D.M., (2016). Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res., 161, 1–9. https://doi.org/10.1016/j.still.2016.03.002
DOI: https://doi.org/10.1016/j.still.2016.03.002
- Hosseini Bai, S., Xu, C.Y., Xu, Z., Blumfield, T., Zhao, H., Wallace, H., Reverchom, F., Van Zwieten, L. (2015). Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ. Sci. Pollut. Res., 22, 3803–3809. Available: https://link.springer.com/article/10.1007/s11356-014-3649-2
DOI: https://doi.org/10.1007/s11356-014-3649-2
- Jones, D.L., Murphy, D.V., Khalid, M., Ahmad, W., Edward-Jones, G., DeLuca, T.H. (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem., 43, 1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018
DOI: https://doi.org/10.1016/j.soilbio.2011.04.018
- Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. (2003). Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agric. Forest Meteor., 121, 19–35. https://doi.org/10.1016/j.agrformet.2003.08.027
DOI: https://doi.org/10.1016/j.agrformet.2003.08.027
- Kraska, P., Oleszczuk, P., Andruszczak, S., Kiecińska-Poppe, E., Różyło, K., Pałys, E., Gierasimiuk, P., Michałojć, Z. (2016). Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil. Plant Soil Environ., 62(11), 483–489. Available: https://www.agriculturejournals.cz/publicFiles/94_2016-PSE.pdf
DOI: https://doi.org/10.17221/94/2016-PSE
- Lehmann, J., da Silva Junior, J.P., Steiner, C., Nehls, T., Zech, W., Glaser, B. (2003a). Nutrient availability and leaching in an archaeological Anthrosol and Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249, 343–357. http://www.css.cornell.edu/faculty/lehmann/publ/PlantSoil%20249,%20343-357,%202003%20Lehmann.pdf
DOI: https://doi.org/10.1023/A:1022833116184
- Lehmann, J., Kern, D., German, L., McCann, J., Martins, G.C., Moreira, L., (2003b). Soil fertility and production potential. Chapter 6. In: Amazonian dark earths: origin, properties, management, Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (eds.). Kluwer Academic, Dordrecht, 105–124. Available: https://link.springer.com/chapter/10.1007/1-4020-2597-1_6
DOI: https://doi.org/10.1007/1-4020-2597-1_6
- Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biol. Biochem. 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
DOI: https://doi.org/10.1016/j.soilbio.2011.04.022
- Liu, Z., Dugan, B., Masiello, C.A., Barnes, R.T., Gallagher, M.E., Gonnermann, H. (2016). Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. J. Hydrol., 533, 461–472. https://doi.org/10.1016/j.jhydrol.2015.12.007
DOI: https://doi.org/10.1016/j.jhydrol.2015.12.007
- Majeed, A.J., Dikici, H., Demir, Ö.F. (2018). Effect of biochar and nitrogen applications on growth of corn (Zea mays L.) plants. Turk. J. Agric. – Food Sci. Technol., 6(3), 346–351. https://doi.org/10.24925/turjaf.v6i3.346-351.1746
DOI: https://doi.org/10.24925/turjaf.v6i3.346-351.1746
- Marks, E.A.N., Mattana, S., Alcañiz, J.M., Domene, X. (2014). Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Europ. J. Soil Biol., 60, 104–111. https://doi.org/10.1016/j.ejsobi.2013.12.002
DOI: https://doi.org/10.1016/j.ejsobi.2013.12.002
- Masek, O., Brownsort, P., Cross, A., Sohi, S. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel 103, 151–155. https://doi.org/10.1016/j.fuel.2011.08.044
DOI: https://doi.org/10.1016/j.fuel.2011.08.044
- Matsubara, Y.-I., Hasegawa, N., Fukui, H. (2002). Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. Jpn. Soc. Hortic. Sci., 71, 370–374. https://doi.org/10.2503/jjshs.71.370
DOI: https://doi.org/10.2503/jjshs.71.370
- Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Borresen, T. (2016). In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res., 155, 35–44. https://doi.org/10.1016/j.still.2015.08.002
DOI: https://doi.org/10.1016/j.still.2015.08.002
- Omondi, M.O., Xia, X., Nahayo, A., Liu, X., Korai, P.K., Pan, G., (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029
DOI: https://doi.org/10.1016/j.geoderma.2016.03.029
- Pacholak, E., Cwynar, M., Zydlik, Z. (1996). Wpływ siedemnastoletniego nawożenia i nawadniania na wzrost jabłoni odmiany ‘Šampion’ na podkładce P 60 w drugim roku po replantacji [Effect of 17-year fertilization and irrigation on the growth of ‘Šampion’ apple trees on P 60 rootstock in the second year after replantation]. 34. Ogólnopolska Naukowa Konferencja Sadownicza, Skierniewice, 96–99.
- Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil Soils, 48, 271–284. Available: https://link.springer.com/article/10.1007/s00374-011-0624-7
DOI: https://doi.org/10.1007/s00374-011-0624-7
- Rebandel, Z. (1987). Problem zmęczenia gleby w sadownictwie. Sadownictwo w Wielkopolsce [The problem of soil fatigue in fruit farming. Fruit growing in Wielkopolska]. PWRiL, Warszawa.
- Schaffer, E., Percival, G. (2016). The influence of biochar, slow-release molasses, and an organic N : P : K fertilizer on transplant survival of Pyrus communis ‘Williams’ Bon Chrétien’. Arboricult. Urban For. 42(2), 102–110. Available: http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=3385&Type=2
DOI: https://doi.org/10.48044/jauf.2016.009
- Scheer, C., Grace, P.R., Rowlings, D.W., Kimber, S., Van Zwieten, L. (2011). Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil, 345, 47–58. Available: https://link.springer.com/article/10.1007/s11104-011-0759-1
DOI: https://doi.org/10.1007/s11104-011-0759-1
- Sienkiewicz, P. (2006). Wpływ głęboszowania i nawożenia na wzrost jabłoni i grusz posadzonych po zlikwidowanym sadzie jabłoniowym [The effect of subsoiling and fertilization on the growth of apple and pear trees planted in a liquidated apple orchard]. Acta Agrophys., 8(4), 949–961.
- Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R. (2010). A review of biochar and its use and function in soil. Adv. Agron., 105, 47–82. https://doi.org/10.1016/S0065-2113(10)05002-9
DOI: https://doi.org/10.1016/S0065-2113(10)05002-9
- Steiner, C., Teixeira, W.G., Lehmann, J., Nehls, T., de Macedo, J.L.C., Blum, W.E.H., Zech, W. (2007). Long-term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291(1–2), 275–290. Available: https://link.springer.com/article/10.1007/s11104-007-9193-9
DOI: https://doi.org/10.1007/s11104-007-9193-9
- Street, T.A., Doyle, R.B., Close, D.C. (2014). Biochar media addition impacts apple Rootstock growth and nutrition. HortScience, 49(9), 1188–1193. https://doi.org/10.21273/HORTSCI.49.9.1188
DOI: https://doi.org/10.21273/HORTSCI.49.9.1188
- Tammeorg, P., Bastos, A.C., Jeffery, S., Rees, F., Kern, J., Graber, E.R., Ventura, M., Kibblewhite, M., Amaro, A., Budai, A., Cordovil, C.M.d.S., Domene, X., Gardi, C., Gasco, G., Horak, J., Kammann, C., Kondrlova, E., Laird, D., Loureiro, S., Martins, M.A.S., Panzacchi, P., Prasad, M., Prodana, M., Puga, A.P., Ruysschaert, G., Sas Paszt, L., Silva, F.C., Teixeira, W.G., Tonon, G., Vedove, G,D., Zavalloni, C., Glaser, B., Verheijen, F.A.G., (2016). Biochars in soils: towards the required level of scientific understanding. J. Environment. Engineer. Landscape Manag., 25(2) 1–16. https://doi.org/10.3846/16486897.2016.1239582
DOI: https://doi.org/10.3846/16486897.2016.1239582
- Tan, Z., Linb, C.S.K., Jic, X., Raineyd, T.J. (2017). Returning biochar to fields: a review. Appl. Soil Ecol., 116, 1–11. https://doi.org/10.1016/j.apsoil.2017.03.017
DOI: https://doi.org/10.1016/j.apsoil.2017.03.017
- Thomas, S.C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A., Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environment. Manag., 129, 62–68. https://doi.org/10.1016/j.jenvman.2013.05.057
DOI: https://doi.org/10.1016/j.jenvman.2013.05.057
- Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag., 27, 205–212. Available: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1475-2743.2011.00340.x
DOI: https://doi.org/10.1111/j.1475-2743.2011.00340.x
- Verheijen, F.G.A., Jeffery, S., Bastos, A.C., van der Velde, M., Diafas, I. (2010). Biochar application to soils – a critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxembourg.
Downloads
Download data is not yet available.
-
Güzella Yılmaz,
Hakan Karadağ,
Onur Saraҫoğlu,
Osman Öcalan,
Effects of biochar applications on growth, nutrient content and biochemical properties of Ocimum basilicum L.
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 5 (2023)
-
Muhammad Owais Shahid,
Atif Muhmood,
Muhammad Ihtisham,
Mati ur Rahman,
Noor Amjad,
Muhammad Sajid,
Khawar Riaz,
Asghar Ali,
FRUIT YIELD AND QUALITY OF 'FLORIDA KING' PEACHES SUBJECTED TO FOLIAR CALCIUM CHLORIDE SPRAYS AT DIFFERENT GROWTH STAGES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 1 (2020)
-
Syed Tanveer Shah,
Muhammad Sajid,
Naqib Ullah Khan,
Abdur Rab,
Noor Ul Amin,
Muhammad Arif,
Bibi Haleema,
Sana Saeed,
PEACH ANTIOXIDANT AND PHENOLIC ACTIVITIES INFLUENCED BY THE APPLICATION OF 1-METHYLCYCLOPROPENE (1-MCP) AT POST-HARVEST
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Koray Kaçan,
EFFECT OF DIFFERENT CROP ROTATIONS ON WEED INFESTATION AND YIELD OF SILAGE MAIZE (Zea mays L.) AND MUSKMELON (Cucumis melo L.) IN ORGANIC CULTIVATION
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
-
Iwona Domagała-Świątkiewicz,
Piotr Siwek,
Paulina Lalewicz,
Short-term effects of brassica cover crops on soil quality indicators in organic production in high tunnels
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 6 (2023)
-
Branka Ljevnaić-Mašić,
Milka Brdar-Jokanović,
Dejana Džigurski,
Ljiljana Nikolić,
Maja Meseldžija,
Weed composition in conventionally and organically grown medical and aromatic plants
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 4 (2022)
-
Marzena Błażewicz-Woźniak,
Dariusz Wach,
THE FERTILIZER VALUE OF SUMMER CATCH CROPS PRECEEDING VEGETABLES AND ITS VARIATION IN THE CHANGING WEATHER CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 3 (2012)
-
Robert Rosa,
Anna Zaniewicz-Bajkowska,
Edyta Kosterna,
Jolanta Franczuk,
PHACELIA AND AMARANTH CATCH CROPS IN SWEET CORN CULTIVATION. PART I. CORN YIELDS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 1 (2012)
-
Shima Rahmanian Kooshkaki,
Abdolhossein Aboutalebi Jahromi,
Mehdi Hosseinifarahi,
The effect of substrate, organic matter, and salinity on the contents of essential oil and active ingredients of lemon balm (Melissa officinalis L.).
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 1 (2023)
-
Katarzyna Dzida,
Karolina Pitura,
THE INFLUENCE OF VARIED NITROGEN FERTILIZATION ON YIELD AND CHEMICAL COMPOSITION OF SWISS CHARD (Beta vulgaris L. var. cicla L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 7 No. 3 (2008)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.