Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 2 (2024)

Articles

Evaluation of Ca(NO3)2 and various container cell size effects on some growth attributes and nutrient content of tomato transplants

DOI: https://doi.org/10.24326/asphc.2024.5339
Submitted: February 14, 2024
Published: 2024-04-30

Abstract

Optimizing container cell size and nutrition is crucial for enhancing the quality of vegetable transplants. The current study evaluated the effect of different cell sizes and Ca(NO3)2 on some properties of tomato (Solanum lycopersicum L.) transplants. Experimental treatment included four levels (0, 50, 100, and 150 mg L–1) of Ca(NO3)2 and 5 different cell sizes of containers (1, 2, 3, 4, and 5) in a factorial experiment based on a completely randomized design (CRD) with three replications under greenhouse conditions. Ca(NO3)2 and larger cell size, increased height, stem diameter, fresh and dry weights of roots and shoots, and concentration of chlorophyll, protein, SPAD, carbohydrates, and macro/micronutrients. The results revealed that maximum shoot and root fresh and dry weight, photosynthesis pigments, N, P, K, Ca, and Fe concentrations were recorded at 150 mg L–1 × cell size 5. In comparison, the highest Zn and Mn concentrations were recorded at 100 mg L–1 × cell size 4 and 5. Our results demonstrated that applying Ca(NO3)2 and increasing the cell size of the containers improved the traits evaluated, so Ca(NO3)2 at 10 and 15 mg L–1 with cell size 5 can be recommended to transplant producers.

References

  1. Abbasi, N., Zahoor, M., Khan, H.A., Qureshi, A.A. (2012). Effect of encapsulated calcium carbide application at different growth stages on potato (Solanum tuberosum L.) growth, yield and tuber quality. Pak. J. Bot., 44, 1543–1550.
  2. Abdelgadir, E.M., Oka, M., Fujiyama, H. (2005). Characteristics of nitrate uptake by plants under salinity. J. Plant Nutr., 28, 33–46. https://doi.org/10.1081/PLN-200042156 DOI: https://doi.org/10.1081/PLN-200042156
  3. Albornoz, F. (2016). Crop responses to nitrogen overfertilization: a review. Sci. Hortic., 205, 79–83. https://doi.org/10.1016/j.scienta.2016.04.026 DOI: https://doi.org/10.1016/j.scienta.2016.04.026
  4. Alrashidi, A.A., Alhaithloul, H.A.S., Soliman, M.H., Attia, M.S., Elsayed, S.M., SADEK, A.M., FAKHR, M.A. (2022). Role of calcium and magnesium on dramatic physiological and anatomical responses in tomato plants. Not. Bot. Horti Agrobot. Cluj-Napoca., 50, 12614–12614. DOI: https://doi.org/10.15835/nbha50112614
  5. Aminifard, M.H., Aroiee, H., Ameri, A., Fatemi, H. (2012). Effect of plant density and nitrogen fertilizer on growth, yield and fruit quality of sweet pepper (Capsicum annum L.). Afr. J. Agric. Res., 7, 859–866. DOI: https://doi.org/10.5897/AJAR10.505
  6. Annapurna, D., Rathore, T., Joshi, G. (2004). Effect of container type and size on the growth and quality of seedlings of Indian sandalwood (Santalum album L.). Aust. For., 67, 82–87. https://doi.org/10.1080/00049158.2004.10676211 DOI: https://doi.org/10.1080/00049158.2004.10676211
  7. Arnon, A. (1967). Method of extraction of chlorophyll in the plants. Agron. J., 23, 112–121.
  8. Ayyub, C.M., Pervez, M.A., Shaheen, M.R., Ashraf, M.I., Haider, M.W., Hussain, S., Mahmood, N. (2012). Assessment of various growth and yield attributes of tomato in response to pre-harvest applications of calcium chloride. Pak. J. Life Soc. Sci., 10, 102–105.
  9. Balliu, A., Sallaku, G., Nasto, T. (2017). Nursery management practices influence the quality of vegetable seedlings. Italus Hortus., 24, 39–52. https://doi.org/10.26353/j.itahort/2017.3.3952 DOI: https://doi.org/10.26353/j.itahort/2017.3.3952
  10. Boodia, N., Dursun, G., Govinden-Soulange, J. (2011). Influence of soilless growing media, pot size and sieved media on the production of Hibiscus sabdariffa L. seedlings. Aust. J. Agric. Res., 2, 147–154.
  11. Borgognone, D., Colla, G., Rouphael, Y., Cardarelli, M., Rea, E., Schwarz, D. (2013). Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Sci. Hortic., 149, 61–69. https://doi.org/10.1016/j.scienta.2012.02.012 DOI: https://doi.org/10.1016/j.scienta.2012.02.012
  12. Boroujerdnia, M., Ansari, N.A. (2007). Effect of different levels of nitrogen fertilizer and cultivars on growth, yield and yield components of romaine lettuce (Lactuca sativa L.). Middle East. Russ. J. Plant Sci. Biotechnol., 1, 47–53.
  13. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. https://doi.org/10.1006/abio.1976.9999 DOI: https://doi.org/10.1006/abio.1976.9999
  14. Brazaitytė, A., Duchovskis, P., Urbonavičiūtė, A., Samuolienė, G., Jankauskienė, J., Sakalauskaitė, J., Šabajevienė, G., Sirtautas, R., Novičkovas, A. (2010). The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirbyste-Agriculture, 97, 89–98.
  15. Buchanan, B.B., Gruissem, W., Jones, R.L., (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.
  16. Chakraborty, R., Das, S., Bhattacharjee, S.K. (2015). Optimization of biodiesel production from Indian mustard oil by biological tri-calcium phosphate catalyst derived from turkey bone ash. Clean Technol. Environ. Policy., 17, 455–463. https://doi.org/10.1007/s10098-014-0802-z DOI: https://doi.org/10.1007/s10098-014-0802-z
  17. Chen, Q., Wang, J., Rayson, G., Tian, B., Lin, Y. (2002). Sensor array for carbohydrates and amino acids based on electrocatalytic modified electrodes. Anal. Chem., 65, 251–254. https://doi.org/10.1021/ac00051a011 DOI: https://doi.org/10.1021/ac00051a011
  18. Coelho, A.R.F., Lidon, F.C., Pessoa, C.C., Marques, A.C., Luís, I.C., Caleiro, J., Simões, M., Kullberg, J., Legoinha, P., Brito, M., Guerra, M., Leitão, R.G., Galhano, C., Scotti-Campos, P., Semedo, J.N., Silva, M.M., Pais, I.P., Silva, M.J., Rodrigues, A.P., Pessoa, M.F., Ramalho, J.C., Reboredo, F.H. (2021). Can Foliar Pulverization with CaCl2 and Ca(NO3)2 Trigger Ca Enrichment in Solanum tuberosum L. Tubers?. Plants, 10, 245. DOI: https://doi.org/10.3390/plants10020245
  19. Coskun, D., Britto, D.T., Shi, W., Kronzucker, H.J. (2017). Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants., 3, 1–10. DOI: https://doi.org/10.1038/nplants.2017.74
  20. Dehnavard, S., Souri, M.K., Mardanlu, S. (2017). Tomato growth responses to foliar application of ammonium sulfate in hydroponic culture. J. Plant Nutr., 40, 315–323. https://doi.org/10.1080/01904167.2016.1240191 DOI: https://doi.org/10.1080/01904167.2016.1240191
  21. Djidonou, D., Zhao, X., Koch, K.E., Zotarelli, L. (2019). Nitrogen accumulation and root distribution of grafted tomato plants as affected by nitrogen fertilization. HortScience, 54, 1907–1914. https://doi.org/10.21273/HORTSCI14066-19 DOI: https://doi.org/10.21273/HORTSCI14066-19
  22. Dubey, R.S., Srivastava, R.K., Pessarakli, M., 2021. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. Handbook of plant and crop physiology. CRC Press, 579–616. DOI: https://doi.org/10.1201/9781003093640-36
  23. El Gendy, A.G., El Gohary, A.E., Omer, E.A., Hendawy, S.F., Hussein, M.S., Petrova, V., Stancheva, I. (2015). Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Ind. Crops Prod., 69, 167–174. https://doi.org/10.1016/j.indcrop.2015.02.023 DOI: https://doi.org/10.1016/j.indcrop.2015.02.023
  24. Fellet, G., Pilotto, L., Marchiol, L., Braidot, E. (2021). Tools for nano-enabled agriculture: fertilizers based on calcium phosphate, silicon, and chitosan nanostructures. Agronomy, 11, 1239. DOI: https://doi.org/10.3390/agronomy11061239
  25. Fredes, I., Moreno, S., Díaz, F.P., Gutiérrez, R.A. (2019). Nitrate signaling and the control of Arabidopsis growth and development. Curr. Opin. Plant Biol., 47, 112–118. DOI: https://doi.org/10.1016/j.pbi.2018.10.004
  26. Gul, S., Whalen, J.K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem., 103, 1–15. https://doi.org/10.1016/j.soilbio.2016.08.001 DOI: https://doi.org/10.1016/j.soilbio.2016.08.001
  27. Gülser, F. (2005). Effects of ammonium sulphate and urea on NO3− and NO2− accumulation, nutrient contents and yield criteria in spinach. Sci. Hortic., 106, 330–340. https://doi.org/10.1016/j.scienta.2005.05.007 DOI: https://doi.org/10.1016/j.scienta.2005.05.007
  28. Hamdi, W., Helali, L., Beji, R., Zhani, K., Ouertatani, S., Gharbi, A. (2015). Effect of levels calcium nitrate addition on potatoes fertilizer. Int. Res. J. Eng. Tech., 2, 2006–2013.
  29. Hasegawa, T., Sawano, S., Goto, S., Konghakote, P., Polthanee, A., Ishigooka, Y., Kuwagata, T., Toritani, H., Furuya, J. (2008). A model driven by crop water use and nitrogen supply for simulating changes in the regional yield of rain-fed lowland rice in Northeast Thailand. Paddy Water Environ., 6, 73–82. https://doi.org/10.1007/s10333-007-0099-1 DOI: https://doi.org/10.1007/s10333-007-0099-1
  30. Hassanein, M., Ahmed, A.G., Zaki, N.M. (2018). Effect of nitrogen fertilizer and bio-fertilizer on yield and yield components of two wheat cultivars under sandy soil. Middle East J. Appl. Sci., 8, 37–42.
  31. Huang, D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., Zhou, L., Wang, D., Xu, P., Cheng, M. (2017). Effects of calcium at toxic concentrations of cadmium in plants. Planta, 245, 863–873. https://doi.org/10.1007/s00425-017-2664-1 DOI: https://doi.org/10.1007/s00425-017-2664-1
  32. Ibrahim, M.E.H., Zhu, X., Zhou, G., Ali, A.Y.A., Ahmad, I., Farah, G.A. (2018). Nitrogen fertilizer alleviated negative impacts of NaCl on some physiological parameters of wheat. Pak. J. Bot., 50, 2097–2104.
  33. Jones, J.B. (1972). Plant tissue analysis for micronutrients. In: Micronutrients in agriculture, Mortvedt, J.J., Giordano, P.M., Lindsay, W.L. (eds.). Soil Science Society of America, Madison, Wisconsin.
  34. Kabir, R., Yeasmin, S., Islam, A., Sarkar, M.R. (2013). Effect of phosphorus, calcium and boron on the growth and yield of groundnut (Arachis hypogea L.). Int. J. Biosci. BioTechnol. 5, 51–60.
  35. Kamara, E.G., Olympio, N.S., Asibuo, J., Kabbia, M.K., Yila, K.M., Conteh, A. (2017). Effect of calcium and phosphorus fertilizer on seed yield and nutritional quality of groundnut (Arachis hypogaea L.). Intl. J. Agric. Forest., 6, 129–133. https://doi.org/10.5923/j.ijaf.20170706.02
  36. Kasai, M., Koide, K., Ichikawa, Y. (2012). Effect of pot size on various characteristics related to photosynthetic matter production in soybean plants. Int. J. Agron., 2012, 1–7. https://doi.org/10.1155/2012/751731 DOI: https://doi.org/10.1155/2012/751731
  37. Kaya, C., Ak, B.E., Higgs, D., Murillo-Amador, B. (2002). Influence of foliar-applied calcium nitrate on strawberry plants grown under salt-stressed conditions. Aust. J. Exp. Agric., 42, 631. https://doi.org/10.1071/EA01110 DOI: https://doi.org/10.1071/EA01110
  38. Khonghintaisong, J., Songsri, P., Toomsan, B., Jongrungklang, N. (2018). Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Tech., 20, 396–406. https://doi.org/10.1007/s12355-017-0564-0 DOI: https://doi.org/10.1007/s12355-017-0564-0
  39. Kizito, S., Luo, H., Lu, J., Bah, H., Dong, R., Wu, S. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability, 11, 3211. https://doi.org/10.3390/su11113211 DOI: https://doi.org/10.3390/su11113211
  40. Kumar, D., Minhas, J., Singh, B. (2007). Calcium as a supplementary nutrient for potatoes grown under heat stress in sub-tropics. Potato J. 34(3–4), 159–164.
  41. Leskovar, D., (2020). Transplanting. The physiology of vegetable crops. Ed. 2. 31–60. DOI: https://doi.org/10.1079/9781786393777.0031
  42. Liu, R., Yang, Y., Wang, Y.-s., Wang, X.-C., Rengel, Z., Zhang, W.-J., Shu, L.-Z. (2020). Alternate partial root-zone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency. Agric. Water Manag., 233, 106049. https://doi.org/10.3389/fpls.2021.722459 DOI: https://doi.org/10.1016/j.agwat.2020.106049
  43. Marschner, P. (2012). Marschner՚s mineral nutrition of higher plants, 3rd ed., Acad. Press. London.
  44. Megersa, H., Lemma, D., Banjawu, D. (2018). Effects of plant growth retardants and pot sizes on the height of potting ornamental plants: a short review. J. Hortic., 5, 1000220. https://doi.org/10.4172/2376-0354.1000220 DOI: https://doi.org/10.4172/2376-0354.1000220
  45. Meise, P., Seddig, S., Uptmoor, R., Ordon, F., Schum, A. (2018). Impact of nitrogen supply on leaf water relations and physiological traits in a set of potato (Solanum tuberosum L.) cultivars under drought stress. J. Agron. Crop Sci., 204, 359–374. https://doi.org/10.1111/jac.12266 DOI: https://doi.org/10.1111/jac.12266
  46. Mekdad, A.A.A. (2015). Sugar beet productivity as affected by nitrogen fertilizer and foliar spraying with boron. Int. J. Curr. Microbiol. App. Sci., 4, 181–196.
  47. Moncada, A., Vetrano, F., Esposito, A., Miceli, A. (2020). Fertigation management and growth-promoting treatments affect tomato transplant production and plant growth after transplant. Agronomy, 10, 1504. https://doi.org/10.3390/agronomy10101504 DOI: https://doi.org/10.3390/agronomy10101504
  48. Naeem, M., Naeem, M.S., Ahmad, R., Ihsan, M.Z., Ashraf, M.Y., Hussain, Y., Fahad, S. (2018). Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Arch. Agron. Soil Sci. 64, 116–131. https://doi.org/10.1080/03650340.2017.1327713 DOI: https://doi.org/10.1080/03650340.2017.1327713
  49. Nasrallah, A.K., Kheder, A.A., Kord, M.A., Fouad, A.S., El-Mogy, M.M., Atia, M.A.M. (2022). Mitigation of salinity stress effects on broad bean productivity using calcium phosphate nanoparticles application. Horticulturae, 8, 75. DOI: https://doi.org/10.3390/horticulturae8010075
  50. Obede da Silva Aragão, O., de Almeida Leite, R., Araújo, A.P., da Conceição Jesus, E. (2020). Effect of pot size on the growth of common bean in experiments with Rhizobium. J. Soil Sci. Plant Nutr., 20, 865–871. https://doi.org/10.1007/s42729-020-00172-7 DOI: https://doi.org/10.1007/s42729-020-00172-7
  51. Oliveira, E.M.M., Ruiz, H.A., Alvarez V, V.H., Ferreira, P.A., Costa, F.O., Almeida, I.C.C. (2010). Nutrient supply by mass flow and diffusion to maize plants in response to soil aggregate size and water potential. Rev. Bras. Cienc. Solo., 34, 317–328. https://doi.org/10.1590/S0100-06832010000200005 DOI: https://doi.org/10.1590/S0100-06832010000200005
  52. Ortas, I. (2013). Influences of nitrogen and potassium fertilizer rates on pepper and tomato yield and nutrient uptake under field conditions. Sci. Res. Essays., 8, 1048–1055. https://doi.org/10.5897/SRE11. 579
  53. Oviedo, V.R.S., Minami, K. (2012). Effect of tray cell size and seedling age on Italian type tomatoes production. Bragantia. 71, 21–27. 10.1590/S0006-87052012000100004 DOI: https://doi.org/10.1590/S0006-87052012000100004
  54. Poorter, H., Bühler, J., van Dusschoten, D., Climent, J., Postma, J.A. (2012). Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol., 39, 839–850. https://doi.org/10.1071/FP12049 DOI: https://doi.org/10.1071/FP12049
  55. Rab, A., Haq, I.-u. (2012). Foliar application of calcium chloride and borax influences plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) fruit. Turk. J. Agric. For., 36, 695–701. https://doi.org/10.3906/tar-1112-7 DOI: https://doi.org/10.3906/tar-1112-7
  56. Rens, L.R., Zotarelli, L., Rowland, D.L., Morgan, K.T. (2018). Optimizing nitrogen fertilizer rates and time of application for potatoes under seepage irrigation. Field Crops Res., 215, 49–58. https://doi.org/10.1016/j.fcr.2017.10.004 DOI: https://doi.org/10.1016/j.fcr.2017.10.004
  57. Roy, P.R., Tahjib-Ul-Arif, M., Polash, M.A.S., Hossen, M.Z., Hossain, M.A. (2019). Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol. Mol. Biol. Plants, 25, 611–624. https://doi.org/10.1007/s12298-019-00654-8 DOI: https://doi.org/10.1007/s12298-019-00654-8
  58. Safi, S.Z., Kamgar-Haghighi, A.A., Zand-Parsa, S., Emam, Y., Honar, T. (2019). Evaluation of yield, actual crop evapotranspiration and water productivity of two canola cultivars as influenced by transplanting and seeding and deficit irrigation. Int. J. Plant Prod., 13, 23–33. https://doi.org/10.1007/s42106-018-0031-1 DOI: https://doi.org/10.1007/s42106-018-0031-1
  59. Salari, A., Jafari, L., Yavari, A. (2022). The effect of tray cell volume and humic acid on morphological and physiological characteristics of tomato transplant (Lycopersicum esculentum Mill.). J. Plant Prod. Res., 29, 225–245. https://doi.org/10.22069/jopp.2021.19524.2879
  60. Salehin, F., Rahman, S. (2012). Effects of zinc and nitrogen fertilizer and their application method on yield and yield components of Phaseolus vulgaris L. Agric. Sci., 3, 9–13. https://doi.org/10.4236/as.2012.31003 DOI: https://doi.org/10.4236/as.2012.31003
  61. Salisu, M.A., Sulaiman, Z., Samad, M., Kolapo, O.K. (2018). Effect of various types and size of container on growth and root morphology of rubber (Hevea brasiliensis Mull. Arg.). Int. J. Sci. Technol., 7, 21–27.
  62. Shafeek, M., Helmy, Y., El-Tohamy, W., El-Abagy, H. (2013). Changes in growth, yield and fruit quality of cucumber (Cucumis sativus L.) in response to foliar application of calcium and potassium nitrate under plastic house conditions. Res. J. Agric. Biol. Sci., 9, 114–118.
  63. Shopova, N., Cholakov, D. (2014). Effect of the age and planting area of tomato (Solanum licopersicum L.) seedlings for late field production on the physiological behavior of plants. Bulg. J. Agric. Sci., 20, 173–177.
  64. Singh, S.P., Mahapatra, B., Pramanick, B., Yadav, V.R. (2021). Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil. Agric. Water Manag., 244, 106539. https://doi.org/10.1016/j.agwat.2020.106539 DOI: https://doi.org/10.1016/j.agwat.2020.106539
  65. Srivastava, R., Parida, A.P., Chauhan, P.K., Kumar, R. (2020). Identification, structure analysis, and transcript profiling of purple acid phosphatases under Pi deficiency in tomato (Solanum lycopersicum L.) and its wild relatives. Int. J. Biol. Macromol., 165, 2253–2266. 10.1016/j.ijbiomac.2020.10.080 DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.080
  66. Tandon, H., Cescas, M., Tyner, E. (1968). An acid‐free vanadate‐molybdate reagent for the determination of total phosphorus in soils. Soil Sci. Soc. Am. J., 32, 48–51. DOI: https://doi.org/10.2136/sssaj1968.03615995003200010012x
  67. Valivand, M., Amooaghaie, R. (2021). Foliar spray with sodium hydrosulfide and calcium chloride advances dynamic of critical elements and efficiency of nitrogen metabolism in Cucurbita pepo L. under nickel stress. Sci. Hortic., 283, 110052. https://doi.org/10.1016/j.scienta.2021.110052 DOI: https://doi.org/10.1016/j.scienta.2021.110052
  68. VanTine, M., Verlinden, S., McConnell, T. (2003). Growing organic vegetable transplants. West Virginia University.
  69. Wu, D., Chen, C., Liu, Y., Yang, L., Yong, J.W.H. (2023). Iso-osmotic calcium nitrate and sodium chloride stresses have differential effects on growth and photosynthetic capacity in tomato. Sci. Hort., 312, 111883. https://doi.org/10.1016/j.scienta.2023.111883 DOI: https://doi.org/10.1016/j.scienta.2023.111883
  70. Wu, Y.-w., Qiang, L., Rong, J., Wei, C., Liu, X.-l., Kong, F.-l., Ke, Y.-p., Shi, H.-c., Yuan, J.-c. (2019). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. J. Integr. Agric., 18, 1246–1256. https://doi.org/10.1016/S2095-3119(18)62030-1 DOI: https://doi.org/10.1016/S2095-3119(18)62030-1
  71. Xiao-long, S., Zhi-meng, Z., Liang-xiang, D., Guan-chu, Z., Dun-wei, C., Hong, D., Jia-ming, T. (2018). Effects of calcium fertilizer application on absorption and distribution of nutrients in peanut under salt stress. Yingyong Shengtai Xuebao, 29. https://doi.org/10.13287/j.1001-9332.201810.026
  72. Xiong, D., Chen, J., Yu, T., Gao, W., Ling, X., Li, Y., Peng, S., Huang, J. (2015). SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep., 5, 13389. https://doi.org/10.1038/srep13389 DOI: https://doi.org/10.1038/srep13389
  73. Yang, Z., Hammer, G., van Oosterom, E., Rochais, D., Deifel, K. (2010). Effects of pot size on growth of maize and sorghum plants. In: George-Jaeggli B., Jordan D.R. (eds.) Australian Summer Grains Conference, Gold Coast. Queensland, Australia.
  74. Zhang, Z., Wu, P., Zhang, W., Yang, Z., Liu, H., Ahammed, G.J., Cui, J. (2020). Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber (Cucumis sativus L.) seedlings under low temperature. Sci. Hortic., 261, 108953. https://doi.org/10.1016/j.scienta.2019.108953 DOI: https://doi.org/10.1016/j.scienta.2019.108953

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.