Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Effect of fluoride and selenium compounds on selected biochemical parameters of two cultivars of sweet corn (Zea mays var. saccharata) seedlings

MICHAŁ STRĘK

Katedra Fizjologii Roślin i Biochemii Zachodniopomorski Uniwersytet Technologiczny w Szczecinie ul. Słowackiego 17, 71-434 Szczecin

ARKADIUSZ TELESIŃSKI

Katedra Fizjologii Roślin i Biochemii Zachodniopomorski Uniwersytet Technologiczny w Szczecinie ul. Słowackiego 17, 71-434 Szczecin


Abstract

The aim of the study was to determine the effect of fluoride (F) and selenium (Se) on selected biochemical parameters of two sweet corn cultivars: ‘Złota Karłowa’ and ‘Waza’. A pot experiment was carried out in laboratory conditions on loamy sand with a Corg content of 8.7 g·kg-1. Soil samples were included in various combinations of fluoride (as NaF so that the amount of F was 10 mmol·kg-1) or/and selenium in two oxidation states +IV and +VI (as H2SeO3 and H2SeO4, respectively, so that the amount of Se was 0.05 mmol·kg-1). 15 corn seeds of the same cultivar were seeded for each combination. The plants growing in soil without addition of F and Se were the reference. On days 14, 21 and 28 the contents of assimilation pigments (chlorophyll a, chlorophyll b, carotenoids), total polyphenols and proline were measured. The application of fluoride and selenium, both separately and together, caused significant changes in biochemical parameters. It also coincided with the morphological characteristics of the seedlings of both varieties of sweet corn. In all combinations with Se(VI), the seedlings were dried just after germination. It is difficult to unambiguously assess the influence of Se(IV) and F on the measured parameters. The observed changes were dependent on the date of measurement as well as the varieties of corn. However, it can be stated that the presence of Se(IV) and F soil significantly affected the content of assimilation pigments rather than the concentration of total polyphenols and proline. There was also a statistically significant positive correlation between the assimilation pigment content, and also between the total polyphenol content and proline content.

Keywords:

fluoride, selenium, corn, assimilation pigments, total polyphenols, proline

Arnon D.I., Allen M.B., Whatley F.R., 1956. Photosynthesis by isolated chloroplasts. Biochim. Biophys Acta. 20, 449–461.

Bates L.S., Waldren R.P., Teare I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39(1), 205–207.

Baunthiyal M., Ranghar S., 2014. Physiological and biochemical responses of plants under fluoride stress. Fluoride 47(4), 287–293.

Bellomo S., Aiuppa A., D'Alessandro W., Parello F., 2007. Environmental impact of magmatic fluorine emission in the Mt. Etna area. J. Volcan. Geoth. Res. 165, 87–101.

Borowska K., Lemanowicz J., Koper J., Siwik-Ziomek A., Piotrowska-Długosz A., Polkowska M., 2015. Zależność między zawartością fitodostępnych form selenu, siarki i fosforu w glebie oraz ich wpływ na pobieranie selenu przez rośliny pszenicy ozimej w warunkach zróżnicowanego nawożenia. Zesz. Probl. Post. Nauk Rol. 580, 3–11.

Dong J.Z., Wang Y., Wang S.H., Yin L.P., Xu G.J., Zheng C., Lei C., Zhang M.Z., 2013. Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J. Sci. Food Agric. 93(2), 310–315.

Elloumi N., Amor A.B., Zouari M., Belhaj D., Abdallah F.B., Kallel M., 2016. adaptive biochemical responses of Punica granatum to atmospheric fluoride pollution. Fluoride 49(3 Pt 2), 357–369.

Elloumi N., Zouari M., Mezghani I., Abdallah F.B., Woodward S., Kallel M., 2017. Adaptive bio-chemical and physiological responses of Eriobotrya japonica to fluoride air pollution. Ecotoxicology 26(7), 991–1001.

Gao Y.-H., Fu S.-B., Xu C.-B., Wan G.-M., Wu Y., Sun D.-J. 2005. Action and antagonistic effects of selenium on fluorosis associated with brick tea. Chin. J. Endemiol. 24(1), 11–13.

Haghighi M., Sheibanirad A., Pessarakli M., 2016. Effects of selenium as a beneficial element on growth and photosynthetic attributes of greenhouse cucumber. J. Plant Nutr. 39(10), 1493–1498.

Hawrylak-Nowak B., 2008. Effect of selenium on selected macronutrients in maize plants. J. Elem. 13(4), 513–519.

Kłódka D., Telesiński A., Mroczek J., Komsta A., 2009. Zmiany zawartości kwasu askorbinowego, glutationu, flawonoidów oraz związków fenolowych w wybranych gatunkach roślin w zależności od stopnia utlenienia selenu dodanego do podłoża. Część I. Rośliny jednoliścienne. Ochr. Środ. Zas. Natur. 40, 293–300.

Kumar K.A., Rao A.V.B., 2008. Physiological responses to fluoride in two cultivars of mulberry. World J. Agric. Sci. 4(4), 463–466.

Lichtenthaler H., Wellburn A., 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603, 591–592.

Luo K., Ren D., Xu L., Dai S., Cao D., Feng F., Tan J., 2004. Fluoride content and distribution pattern in Chinese coals. Int. J. Coal Geol. 57, 143–149.

Lyons M.P., Papazyan T.T., Surai P.F., 2007. Selenium in food chain and animal nutrition: lessons from nature – review. Asian-Aust. J. Anim. Sci. 20(7), 1135–1155.

McLaughlin M.J., Stevens D.P., Keerthisinghe D.G., Cayley J.W.D., Ridley A.M., 2001. Contamination of soil with fluoride by long-term application of superphosphates to pastures and risk to grazing animals. Austr. J. Soil Res. 39, 627–640.

Mourad N.M., Sharshar T., Elnimr T., Mousa M.A., 2009. Radioactivity and fluoride contamination derived from a phosphate fertilizer plant in Egypt. Appl. Radiat. Isot. 67, 1259–1268.

Naim M.A., Matin M.A., Anee T.I., Hasanuzzaman M., Chowdhury I.F., Razafindrabe B.H.N., Hasanuzzaman M., 2017. Exogenous selenium improves growth, water balance and chlorophyll content in indica and japonica rice exposed to salinity. Transylv. Rev. 25(16), 4047–4057.

Pang Y.X., Guo Y.Q., Zhu P., Fu K.W., Sun Y.F., Tang R.Q. 1996. The effects of fluoride, alone and in combination with selenium, on the morphology and histochemistry of skeletal muscle. Fluoride 29(2), 59–62.

Ram A., Verma P., Gadi B.R., 2014. Effect of fluoride and salicylic acid on seedling growth and biochemical parameters of watermelon (Citrullus lanatus). Fluoride 47(1), 49–55.

Reddy M.P., Kaur M., 2008. Sodium fluoride induced growth and metabolic changes in Salicornia brachiata Roxb. Water Air Soil Pollut. 188, 171–179.

Telesiński A., Śnioszek M., Musik D., Paszun W., Hury G., 2009a. Określenie rodzaju interakcji pomiędzy oddziaływaniem związków selenu i fluoru na aktywność katalazy w roślinach soi (Glycine max L. Merr.). Ochr. Środ. Zas. Natur. 41, 227–235.

Telesiński A., Kłódka D., Komsta A., Mroczek J., 2009b. Zmiany zawartości kwasu askorbinowego, glutationu, flawonoidów oraz związków fenolowych w wybranych gatunkach roślin w zależności od stopnia utlenienia selenu dodanego do podłoża. Część II. Rośliny dwuliścienne. Ochr. Środ. Zas. Natur. 40, 372–379.

Telesiński A., Grzeszczuk M., Jadczak D., Zakrzewska H., 2012. Fluoride content and biological value of flowers of some chamomile (Matricaria recutita L.) cultivars. J. Elem. 17(4), 703–712.

Valkama E., Kivimäenpää M., Hartikainen H., Wulff A., 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria × ananassa) and barley (Hordeum vulgare) treated in the field. Agric. Forest Meteor. 120, 267–278.

Wang A., Xia T., Ru R., Yuan J., Chen X., Yang K., 2004. Antagonistic effects of selenium on oxidative stress, DNA damage, and apoptosis induced by fluoride in human hepatocytes. Fluoride 37(2), 107–116.

Wang S., Liang D., Wang D., Wei W., Fu D., Lin Z., 2012. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci. Total Environ. 15, 159–164.

Yadu B., Chandrakar V., Keshavkant S., 2016. Responses of plants to fluoride: an overview of oxidative stress and defense mechanisms. Fluoride 49(3 Pt 2), 293–302.

Yu L., Haley S., Perret J., Harris M., Wilson J., Qian M., 2002. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 50(6), 1619–1624.

Yu R.-A., Xia T., Wang A.-G., Chen X.-M. 2006. Effect of selenium and zinc on renal oxidative stress and apoptosis induced by fluoride in rats. Biomed. Environ. Stud. 19(6), 439–444.

Zhong Y., Chen J.J., 2016. Effects of selenium on biological and physiological properties of the duckweed Landoltia punctate. Plant Biol. 18(5), 797–804.


Published
2017-10-30



MICHAŁ STRĘK 
Katedra Fizjologii Roślin i Biochemii Zachodniopomorski Uniwersytet Technologiczny w Szczecinie ul. Słowackiego 17, 71-434 Szczecin
ARKADIUSZ TELESIŃSKI 
Katedra Fizjologii Roślin i Biochemii Zachodniopomorski Uniwersytet Technologiczny w Szczecinie ul. Słowackiego 17, 71-434 Szczecin



License

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 

Agronomy Science has adopted a self-archiving policy called blue by the Sherpa Romeo database. From 2021 authors can self-archive article postprints and editorial versions (under the CC BY 4.0 licence). Articles from earlier years (available under the CC BY-NC-ND 4.0 licence) can only be self-archived as editorial versions.


Most read articles by the same author(s)