Influence of rootstock and grafting method on the grafts success and growth of Cedrus deodara (Roxb. ex Lamb.) ‘Karl Fuchs’ Plants


Experimental studies were conducted in 2015–2017 in the Department of Dendrology, Pomology and Nursery of Poznan University of Life Sciences. The aim of the research was to study the usefulness of three rootstocks: Larix decidua, Pinus armandii, Cedrus deodara and two grafting methods: side grafting and split grafting for propagation purposes of Cedrus deodara ‘Karl Fuchs’. In addition, it was evaluated how the rootstock and the age of cultivar shoots influenced the level of chloroplast pigments in the needles. A higher percentage of grafts success was obtained on Pinus armandii and Cedrus deodara using the side grafting method. Grafted scions of ‘Karl Fuchs’ produced the greatest number of lateral buds and the longest lateral increments of growth on Cedrus deodara root stock. Side grafting significantly improved the percentage of plants that restarted their growth in the second year of cultivation. The largest number of buds on two-year-old shoots were counted on plants grafted on Cedrus deodara using split grafting method. The rootstocks used in this experiment had a slight effect on the content of chloroplast pigments in the needles. Plants grafted on Pinus armandii had the highest level of chlorophyll B, and those grafted on Larix decidua – chlorophyll A/B ratio. The content of chloroplast pigments in the needles depended on the age of shoots. The highest level of chlorophyll A, chlorophyll B and carotenoids was observed when needles were collected from the last year’s growth.


deodar cedar; propagation; sprouts growth; number of buds; survival of grafts

Ahlgren, C.E., Wilderness, Q.S. (1972). Some effects of inter and intraspecific grafting on growth and flowering of some five-needle pine. Silvae Genet., 21(3/4), 122–126.
Almqvist, C. (2013). Interstock effects on topgraft vitality and strobili production after topgrafting in Pinus sylvestris. Can. J. For. Res., 43(6), 584–588.
Anjarwalla, P., Ofori, D., Owino, A., Matuku, D., Adika, W., Njogu, K., Kehlenbeck, K. (2017). Testing different grafting methods for vegetative propagation of baobab (Adansonia digitata L.) in Kenya to assist its domestication and promote cultivation. For., Trees Livelihoods, 26(2), 85–95.
Arnon, D.J. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, 1–15.
Asaah, E., Tchoundjeu, Z., Ngahane, W., Tsobeng, A., Kouodiekong, L., Jamnadass, R., Simons, A. (2011). Allanblackia foribunda: a new oil tree crop for Africa: amenability to grafting. New For., 41(3), 389–398.
Barnett, J.R., Weatherhead, I. (1989). The effect of scion water potential on graft success in Sitka spruce (Picea sitchensis). Ann. Bot., 64(1), 9–2.
Blada, I., Panea, T. (2011). Improvement of grafting procedures for the ornamental species: I. Picea pungens Engelm. var. glauca Regel. Ann. For. Res., 54, 185–196.
De-li, S., Shao-ling, J.J., Li-min, Z. (2007). Primary study on survival and growth potential of different grafting methods for Korean pine (J.). Jilin For. Sci. Tech., 3, 002.
Edwards, R.A. (2009). Grafting cedars – a new cultivar of Cedrus deodara? Lincoln University, New Zealand, 24–27.
Fan, W.-J. (2007). Effect analysis of twig grafting of Pinus taiwanensis. J. Fujian For. Sci. Technol., 4, 026.
Frey, H.H., Frampton, J., Blazich, F.A., Hinesley, L.E. (2010). Grafting Fraser Fir (Abies fraseri): effect of grafting date, shade and irrigation. HortScience, 45(4), 617–620.
Frey, H.H., Frampton, J., Blazich, F.A., Hundley, D., Hinesley, L.E. (2011). Grafting fraser fir (Abies fraseri): effect of scion origin (crown position and branch order). HortScience 46(1), 91–94.
Haines, R.J., Simpson J.A. (1994). Scion-rootstock relationships with respect to height growth and foliar concentrations of nitrogen and phosphorus in reciprocal grafts of Pinus caribaea var. hondurensis. New For., 8, 71–79.
Han, Q., Mukai, Y. (1999). Cold acclimation and photoinhibition of photosynthesis accompanied by needle color changes in Cryptomeria japonica during the winter. J. For. Res., 4, 229–234.
Han, Q., Katahata, S., Kakaburi, Y., Mukai, Y. (2004). Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. Tree Physiol., 24, 609–616.
Han, Y., Wang, Y., Jiang, J., Wang, W., Korpelainen, H., Li, C. (2013). Reciprocal grafting separates the roles of the root and shoot in sex-related drought responses in Populus cathayana males and female. Plant Cell Environ., 36, 356–364.
Hiscox, J.D., Israelstam, G.F. (1979). A method for the extractrion of chlorophyll from leaf tissue without maceration. Can. J. Bot., 57, 1332–1334.
Holzer, K. (1970). Experiments in heteroplastic grafting of Pinus cembra. Silvae Gen., 19, 164–170.
Hrynkiewicz-Sudnik, J., Sękowski, B., Wilczkiewicz, M. (1995). Rozmnażanie drzew i krzewów nagozalążkowych (Propagation of conifers trees and shrubs). PWN, Warszawa.
Ishii, K., Hosoi, Y., Maruyama, E., Kanetani, S.-I. (2008). Micropropagation of an endangered species Pinus armandii var. Armamiana. Ann. For. Res., 51, 5–10.
Islam, M.N., Rahim, M.A., Farooque, A.M. (2004). Standardization of time and grafting techniques in mango under Bangladesh condition. Asian J. Plant Sci., 3, 378–386.
Izadi, Z., Zarei, H., Alizadeh, M. (2013). Role of grafting technique on the success of stenting propagation of two rose (Rosa sp.) varieties. Am. J. Plant Sci., 4, 41–44.
Jayawickrama, K.J.S., Jett, J.B., Mckeand, S.E. (1991). Rootstock effects in grafted conifers: a review. New Forest 5, 157–173.
Jayawickrama, K.J.S., Mckeand, S.E., Jett, J.B. (1997). Rootstock effects on scion growth and reproduction in 8-year-old grafted loblolly pine. Can. J. For. Res., 27(11), 1781–1787.
Joshi, C.S., Verman, S.K. (2010). Clonal propagation of Cedrus deodara (Roxb.) G. Don.) via bud grafting. Indian For., 136(9), 1278–1280.
Karadeniz, T. (2005). Relationship between graft success and climatic values in valnut (Juglans regia L.) J. Central European Agr., 6, 631–634.
Lyon, L. (1984). Winter grafting of cedar, spruce and ornamental cherry. Comb. Proc. Int. Plant Prop. Soc., 35, 54–55.
Lewandowska, M., Jarvis, P.G. (1977). Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in sitka spruce, in response to shading and season. New Phytol., 79, 247–256.
Melnyk, C.W., Meyerowitz, E.M. (2015). Plant grafting. Curr. Biol., 25(5), 183–188.
Merzlyak, M.N., Gitelson, A.A. (1995). Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.) J. Plant Physiol., 145, 315–320.
Mudge, K., Janick, J., Scofield, S., Goldschmidt, E.E. (2009). A history of grafting. Hortic. Rev., 35, 437–493.
Mugerwa, B., Okullo, J.B.L. (2010). Grafting success of Pinus caribaea under varying shade intensities at national tree seed center Namanve, Uganda. Afric. J. Plant Sci. Biotechnol., 4, 90–94.
Munjunga, M., Kariuki, W., Njoroge, J.B.M., Ofori, D., Jamnadass, R. (2014). Effect of rootstock type, scion source and grafting methods on the healing of Allanblackia stuhlmannii grafts under two nursery conditions. Afr. J. Hort. Sci., 7, 1–10.
Ofori, D.A., Peprah, T., Henneh, S., Von Berg, J.B., Tchoundjeu, Z., Jamnadass, R., Simons, A.J. (2008). Utility of grafting in tree domestication with reference to Allanblackia parvifora A. Chev. Ghana J. For. 23/24, 42–48.
Ottander, C., O’quist, G. (1991). Recovery of photosynthesis in winter-stressed Scots pine. Plant Cell Environ., 14, 345–349.
Pio, R., Chagas, E.A., Barbosa, W., Signorini, G., Alvarenga, A.A., Abrahão, E., Entelmann, A., (2008). Métodos de enxertia por garfagem de cultivares de marmeleiro no porta-enxerto ‘Japonês’. Rev. Bras. Frutic., 30(1), 267–270.
Rezaee, R., Vahdati, K., Grigoorian, V., Valizadeh, M. (2008). Walnut grafting success and bleeding rate as affected by different grafting methods and seedling vigour. J. Hortic. Sci. Biotechnol., 83, 94–99.
Richards, M. (1972). Bare root grafting of Cedrus. Plant Propag., 18(2), 8.
Robakowski, P. (2005). Susceptibility to low temperature photoinhibition in three conifers differing in successional status. Tree Physiol., 25, 1151–1160.
Rojas, R.V., Garcia, M.V.S.C. (1980). Three studies on the grafting of Pinus patula Schl. et Cham. Cienc. For., 5(23), 21–36.
Zhao, R., Cong, S., Meili, Z., Guoping, C., Zhangying, G., Fuchen, S. (2015). Resistance characteristics of Cedrus deodara and Sabina chinensis to heavy metal accumulation under different atmospheric conditions. Acta Ecol. Sin., 37, 18–22.
Rybus-Zając, M. (2010). Wpływ zwiększonego promieniowania UV-B na poziom barwników chloroplastowych w roślinach cisa pospolitego (Taxus baccata L.) [The effect of increased UV-B radiation on the level of chloroplast pigments in yew plants (Taxus baccata L.]. Nauka Przyr. Technol., 4(3), #38.
Sampson, P.H, Zarco-Tejada, P.J., Mohammed, G.H., Miller, J.R., Noland, T.L. (2003). Hyperspectral remote sensing of forest condition. Estimating chlorophyll content in tolerant hardwoods. For. Sci., 49, 381–391.
Sanou, H., Kambou, S., Teklehaimanot, Z., Dembele, M., Yossi, H., Sina, S., Djingdia, L., Bouvet, J.M. (2004). Vegetative propagation of Vitellaria paradoxa by grafting. Agrofor. Syst., 60, 93–99.
Schmidtling, R.C. (1983). Rootstock influences flowering, growth and survival of loblolly pine grafts. For. Sci., 29(1), 117–124.
Sevik, H., Cetin, M., Belkayali, N. (2016). Determination of charakteristic factors of grafted natural varietes in landscaping: a case study pf black pine clone. Oxid. Commun., 39, 2820–2831.
Shu, W.B., Liang, Y.Y., Yang, Z.Q., Su, W.B., Liang, X.Z. (2013). The graft technology of high-yield rosin Pinus massoniana seed orchard. J. Fujian For. Sci. Technol., 1, 021.
Sims, D.A, Gamon, J.A. (2002). Relationship between leaf pigment content and spectral reflectance across a wide range species, leaf structures and development stages. Remote Sens. Environ., 81, 337–354.
Singh, R.V., Mahajan, N.M. (1967). Grafting in conifers in Himachal Pradesh. In: Proc. 11th Silviculture conference, Forestry research institute and colleges, Dehradun, India, 294–298.
Siniscalco, C. (1995). Propagazione tramite innesto di pianle selezionate dim cedro (Cedrus atlantica (Endl) Carr.) [in Italian, summary in English: Grafting propagation of cedar selected plants (Cedrus atlantica)]. Monti e Boschi, 46(3), 18–20.
Ślaski, J., Sękowski, B. (1988). Szkółkarstwo szczegółowe drzew i krzewów ozdobnych oraz użytkowych [Nursery of detailed ornamental and useful trees and shrubs]. PWRiL, Poznań.
Wendling, I., Stuepp, C.A., Zuffellato-Ribes, K.C. (2016). Araucaria angustifolia grafting: techniques, environments and origin of propagation material. Bosque, 37(2), 285–293.
Wolf, F.T. (1956). Changes in chlorophylls A and B in autumn in leaves. Am. J. Bot., 43, 714–718.
Wu, Y.P., Xue, L., Xiao-Yan, L., Kai, Z., Bo G., Yi-Na, H., Hong, G., (2015). Cedrus deodara pine needle as a potential source of natural antioxidants. Bioactive constituents and antioxidant activities. J. Funct. Foods, 14, 605–612.
Wyka, T., Robakowski, P., Zytkowiak, R. (2008). Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynth. Res., 95, 87–99.
Zarco-Tejada, P.J, Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H. (2002). Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J. Environ. Qual., 31, pp. 1433–1441.

Published : 2019-10-28

Świerczyński, S., Kolasiński, M., Urbaniak, M., Stachowiak, A., & Rybus-Zając, M. (2019). Influence of rootstock and grafting method on the grafts success and growth of Cedrus deodara (Roxb. ex Lamb.) ‘Karl Fuchs’ Plants. Acta Scientiarum Polonorum Hortorum Cultus, 18(5), 63-72.

Sławomir Świerczyński
Department of Dendrology, Pomology and Nursery, Poznan University of Life Sciences, Poznan, Poland  Poland
Marcin Kolasiński 
Department of Dendrology, Pomology and Nursery, Poznan University of Life Sciences, Poznan, Poland  Poland
Magdalena Urbaniak 
Department of Dendrology, Pomology and Nursery, Poznan University of Life Sciences, Poznan, Poland  Poland
Aleksander Stachowiak 
Department of Dendrology, Pomology and Nursery, Poznan University of Life Sciences, Poznan, Poland  Poland
Magdalena Rybus-Zając 
Department of Plant Physiology, Poznań University of Life Sciences, Poznan, Poland  Poland


Articles are made available under the CC BY-NC-ND 4.0 International (recognition by authorship, non-commercial use, no dependent works).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.