Investigating the impact of TiO2 nanoparticles on bioactive compounds in sweet pepper seedlings: a comparison of foliar and root application methods

Andrzej Kalisz

Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland
https://orcid.org/0000-0002-8437-9307

Andrzej Kornaś

Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30‐084 Kraków, Poland
https://orcid.org/0000-0001-9945-3322

Dalibor Húska

Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
https://orcid.org/0000-0003-3852-8751

Radim Zelinka

Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
https://orcid.org/0000-0001-9591-1330

Agnieszka Sękara

Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland
https://orcid.org/0000-0002-9655-5742

Robert Pokluda

Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic
https://orcid.org/0000-0003-0492-6401

Andrzej Sałata

Department of Vegetable and Medicinal Plants, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
https://orcid.org/0000-0002-8162-6587

Joanna Gil

Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland
https://orcid.org/0000-0001-9801-7983


Abstract

Engineered TiO2 nanoparticles (TiO2-NPs) are broadly produced and utilized in various consumer products. However, plant uptake of NPs may lead to disruptions in physiological and metabolic processes, particularly when the plant’s defense mechanisms are overwhelmed. In this study, sweet pepper seedlings were exposed to TiO2-NPs via foliar (2.5% suspension) and root (0.5% suspension) methods, with plants treated with distilled water serving as controls. Results showed that foliar application caused higher accumulation of Ti in leaves as compared to stems, while root exposure led to a higher increase of Ti content in stems than in leaves. Additionally, foliar application led to alterations in chemical composition of the plants, including changes in malondialdehyde (MDA), L-ascorbic acid, total phenolics content, carotenoids, in total antioxidant capacity (TAC) and antioxidant enzymes activity. Root exposure also affected enzyme activity and TAC, but also altered H2O2, MDA and glutathione content. Chlorophylls remained at stable level in the leaves of the seedlings. Overall, these studies provide important information on plant-nanoparticle interactions and the potential effects of different nanoparticle application strategies. These data indicate also that the specific nanoparticles, applied at a controlled manner, have potential to boost the plant metabolism and improve stress tolerance, which is an important factor affecting crops’ quality and productivity.

Keywords:

absorption pathway, antioxidants, Capsicum annuum L., nanoparticles, titanium

Aebi, H. (1984). Catalase in vitro. Meth. Enzymol., 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Akram, N.A, Shafiq, F., Ashraf, M. (2017). Ascorbic acid – A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci., 8, 613. https://doi.org/10.3389/fpls.2017.00613 DOI: https://doi.org/10.3389/fpls.2017.00613

Avellan, A., Schwab, F., Masion, A., Chaurand, P., Borschneck, D., Vidal, V., Rose, J., Santaella, C., Levard, C. (2017). Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ. Sci. Technol., 51(15), 8682–8691. https://dx.doi.org/10.1021/acs.est.7b01133 DOI: https://doi.org/10.1021/acs.est.7b01133

Bilska, K., Wojciechowska, N., Alipour, S., Kalemba, E.M. (2019). Ascorbic acid – the little-known antioxidant in woody plants. Antioxidants, 8(12), 645. https://doi.org/10.3390/antiox8120645 DOI: https://doi.org/10.3390/antiox8120645

Chumyam, A., Shank, L., Faiyue, B., Uthaibutra, J., Saengnil, K. (2017). Effects of chlorine dioxide fumigation on redox balancing potential of antioxidative ascorbate-glutathione cycle in ‘Daw’ longan fruit during storage. Sci. Hortic., 222, 76–83. https://doi.org/10.1016/j.scienta.2017.05.022 DOI: https://doi.org/10.1016/j.scienta.2017.05.022

Chung, I.-M., Rajakumar, G., Thiruvengadam, M. (2018). Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol. Hung., 69(1), 97–109. https://doi.org/10.1556/018.68.2018.1.8 DOI: https://doi.org/10.1556/018.68.2018.1.8

Cocozza, C., Perone, A., Giordano, C., Salvatici, M.C., Pignattelli, S., Raio, A., Schaub, M., Sever, K., Innes, J.L., Tognetti, R., Cherubini, P. (2019). Silver nanoparticles enter the tree stem faster through leaves than through roots. Tree Physiol., 39(7), 1251–1261. https://doi.org/10.1093/treephys/tpz046 DOI: https://doi.org/10.1093/treephys/tpz046

Das, K., Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2(53). http://dx.doi.org/10.3389/fenvs.2014.00053 DOI: https://doi.org/10.3389/fenvs.2014.00053

Dhindsa, R.S., Matowe, W. (1981). Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot., 32(1), 79–91. https://doi.org/10.1093/jxb/32.1.79 DOI: https://doi.org/10.1093/jxb/32.1.79

Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem., 97(4), 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028 DOI: https://doi.org/10.1016/j.foodchem.2005.04.028

Eichert, T., Goldbach, H.E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces-further evidence for a stomatal pathway. Physiol. Plant., 132(4), 491–502. https://doi.org/10.1111/j.1399-3054.2007.01023.x DOI: https://doi.org/10.1111/j.1399-3054.2007.01023.x

Eichert, T., Kurtz, A., Steiner, U., Goldbach, H.E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water -suspended nanoparticles. Physiol. Plant., 134(1), 151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x DOI: https://doi.org/10.1111/j.1399-3054.2008.01135.x

Fu, L., Wang, Z., Dhankher, O.P., Xing, B. (2020). Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J. Exp. Bot., 71(2), 507–519. https://doi.org/10.1093/jxb/erz314 DOI: https://doi.org/10.1093/jxb/erz314

Ghorbanpour, M. (2015). Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J. Plant Physiol., 20, 249–256. https://doi.org/10.1007/s40502-015-0170-7 DOI: https://doi.org/10.1007/s40502-015-0170-7

Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 DOI: https://doi.org/10.1016/j.plaphy.2010.08.016

Gupta, D.K., Palma, J.M., Corpas, F.J. (2018). Antioxidants and antioxidant enzymes in higher plants. Springer International Publishing AG, Cham, Switzerland. https://doi.org/10.1007/978-3-319-75088-0 DOI: https://doi.org/10.1007/978-3-319-75088-0

Guri, A. (1983). Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci., 63(3), 733–737. https://doi.org/10.4141/cjps83-090 DOI: https://doi.org/10.4141/cjps83-090

Hong, J., Wang, C., Wagner, D.C., Gardea-Torresdey, J.L., He, F., Rico, C.M. (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano, 8, 1196–1210. https://doi.org/10.1039/D0EN01129K DOI: https://doi.org/10.1039/D0EN01129K

Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci., 75, 40–53. https://doi.org/10.1016/j.jes.2018.06.010 DOI: https://doi.org/10.1016/j.jes.2018.06.010

Ikewuchi, C.J., Ikewuchi, C.C. (2011). Iodometric determination of the ascorbic acid (vitamin C) content of some fruits consumed in a university community in Nigeria. Glob. J. Pure Appl. Sci., 17(1), 47–49. https://www.ajol.info/index.php/gjpas/article/view/78733

Ishikawa, T., Shigeoka, S. (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem., 72(5), 1143–1154. https://doi.org/10.1271/bbb.80062 DOI: https://doi.org/10.1271/bbb.80062

Jurkow, R., Sękara, A., Pokluda, R., Smoleń, S., Kalisz, A. (2020). Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal(oid) oxide nanoparticles. Agronomy (Basel), 10(7), 997. https://doi.org/10.3390/agronomy10070997 DOI: https://doi.org/10.3390/agronomy10070997

Khan, I., Awan, S.A., Rizwan, M., Ul Hassan, Z., Akram, M.A., Tariq, R., Brestic, M., Xie, W. (2022). Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environ. Sci. Pollut. Res., 29(60), 89823–89833. https://doi.org/10.1007/s11356-022-23945-2 DOI: https://doi.org/10.1007/s11356-022-23945-2

Khan, Z., Shahwar, D., Ansari, M.K.Y., Chandel, R. (2019). Toxicity assessment of anatase (TiO2) nanoparticles: A pilot study on stress response alterations and DNA damage studies in Lens culinaris Medik. Heliyon, 5(7), e02069. https://doi.org/10.1016/j.heliyon.2019.e02069 DOI: https://doi.org/10.1016/j.heliyon.2019.e02069

Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G. (2014a). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. J. Hazard. Mater., 264, 98–106. https://doi.org/10.1016/j.jhazmat.2013.10.053 DOI: https://doi.org/10.1016/j.jhazmat.2013.10.053

Larue, C., Castillo-Michel, H., Sobanska, S., Trcera, N., Sorieul, S., Cécillon, L., Ouerdane, L., Legros, S., Sarret, G. (2014b). Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater., 273, 17–26. https://doi.org/10.1016/j.jhazmat.2014.03.014 DOI: https://doi.org/10.1016/j.jhazmat.2014.03.014

Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.-M., Brisset, F., Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci. Total Environ., 431, 197–208. https://doi.org/10.1016/j.scitotenv.2012.04.073 DOI: https://doi.org/10.1016/j.scitotenv.2012.04.073

Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, O., Liang, C., Hao, H., Xiaoqing, L., Fashui, H. (2008). Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem. Res., 121(1), 69–79. https://doi.org/10.1007/s12011-007-8028-0 DOI: https://doi.org/10.1007/s12011-007-8028-0

Lichtenthaler, H.K., Wellburn, AR. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11(5), 591–592. https://doi.org/10.1042/bst0110591 DOI: https://doi.org/10.1042/bst0110591

Lv, J., Christie, P., Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano, 6, 41–59. https://doi.org/10.1039/C8EN00645H DOI: https://doi.org/10.1039/C8EN00645H

Lyu, S.H., Wei, X.Y., Chen, J.J., Wang, C., Wang, X.M., Pan, D.M., (2017). Titanium as a beneficial element for crop production. Front. Plant Sci., 8, 597. https://doi.org/10.3389/fpls.2017.00597 DOI: https://doi.org/10.3389/fpls.2017.00597

Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15, 523–530.

Mohammadi, R., Maali-Amiri, R., Mantrib, N.L. (2014). Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ. J. Plant Physiol., 61, 768–775. https://doi.org/10.1134/S1021443714050124 DOI: https://doi.org/10.1134/S1021443714050124

Molyneux, P., (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), 211–219.

Mustafa, N., Raja, N.I., Ilyas, N., Ikram, M., Mashwani, Z-ur-R., Ehsan, M. (2021). Foliar applications of plant-based titanium dioxide nanoparticles to improve agronomic and physiological attributes of wheat (Triticum aestivum L.) plants under salinity stress. Green Process. Synt., 10(1), 246–257. http://dx.doi.org/10.1515/gps-2021-0025 DOI: https://doi.org/10.1515/gps-2021-0025

Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232

Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., Foyer, CH. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ., 35(2), 454–484. https://doi.org/10.1111/j.1365-3040.2011.02400.x DOI: https://doi.org/10.1111/j.1365-3040.2011.02400.x

Pijanowski, E., Mrożewski, S., Horubała, A. (1964). Technologia produktów owocowych i warzywnych [Technology of Fruit and Vegetable Products]. PWRiL, Warsaw, Poland.

Popp, C., Burghardt, M., Friedmann, A., Riederer, M. (2005). Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: Permeation of water and uncharged organic compounds. J. Exp. Bot., 56(421), 2797–2806. http://dx.doi.org/10.1093/jxb/eri272 DOI: https://doi.org/10.1093/jxb/eri272

Rafique, R., Zahra, Z., Virk, N., Shahid, M., Pinelli, E., Park, T.J., Kallerhoff, J., Arshad, M. (2018). Dosedependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric. Ecosyst. Environ., 255, 95–101. https://doi.org/10.1016/j.agee.2017.12.010 DOI: https://doi.org/10.1016/j.agee.2017.12.010

Raliya, R., Biswas, P., Tarafdar, JC. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep., 5, 22–26. https://doi.org/10.1016/j.btre.2014.10.009 DOI: https://doi.org/10.1016/j.btre.2014.10.009

Ramel, F., Birtic, S., Cuine, S., Triantaphylides, C., Ravanat, J.L., Havaux, M., (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol., 158(3), 1267–1278. https://doi.org/10.1104/pp.111.182394 DOI: https://doi.org/10.1104/pp.111.182394

Rico, C.M., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2015). Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui, M.H., Al-Whaibi, M.H., Mohammad, F. (eds.), Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer International Publishing Switzerland, pp. 1–17. http://dx.doi.org/10.1007/978-3-319-14502-0_1 DOI: https://doi.org/10.1007/978-3-319-14502-0_1

Satti, S.H., Raja, N.I., Ikram, M., Oraby, H.F., Mashwani, Z-U-R., Mohamed, A.H., Singh, A., Omar, A.A. (2022). Plant-based titanium dioxide nanoparticles trigger biochemical and proteome modifications in Triticum aestivum L. under biotic stress of Puccinia striiformis. Molecules, 27(13), 4274. https://doi.org/10.3390/molecules27134274 DOI: https://doi.org/10.3390/molecules27134274

Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J.L., Wiesner, M.R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology, 10(3), 257–278. https://doi.org/10.3109/17435390.2015.1048326 DOI: https://doi.org/10.3109/17435390.2015.1048326

Servin, A.D., Morales, M.I., Castillo-Michel, H., Hernandez-Viezcas, J.A., Munoz, B., Zhao, L., Nunez, J.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol., 47(20), 11592–11598. https://doi.org/10.1021/es403368j DOI: https://doi.org/10.1021/es403368j

Shan, C., Zhang, S., Ou, X. (2018). The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma, 255(4), 1257–1262. https://doi.org/10.1007/s00709-018-1213-5 DOI: https://doi.org/10.1007/s00709-018-1213-5

Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012, 217037.https://doi.org/10.1155/2012/217037 DOI: https://doi.org/10.1155/2012/217037

Sharma, S., Singh, V.K., Kumar, A., Mallubhotla, S. (2019). Effect of nanoparticles on oxidative damage and antioxidant defense system in plants. In: Roychoudhury, A., Tripathi, D.K. (eds.), Molecular plant abiotic stress: biology and biotechnology. John Wiley & Sons Ltd. http://dx.doi.org/10.1002/9781119463665.ch17 DOI: https://doi.org/10.1002/9781119463665.ch17

Shi, H., Magaye, R., Castranova, V., Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol., 10, 15. https://doi.org/10.1186/1743-8977-10-15 DOI: https://doi.org/10.1186/1743-8977-10-15

Silva, S., de Oliveira, J.M.P.F., Dias, M.C., Silva, A.M.S., Santos, C. (2019). Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. J. Hazard. Mater., 380, 120889. https://doi.org/10.1016/j.jhazmat.2019.120889 DOI: https://doi.org/10.1016/j.jhazmat.2019.120889

Singh, P.K., Srivastava, D., Tiwari, P., Tiwari, M., Verma, G., Chakrabarty, D. (2019). Drought tolerance in plants: molecular mechanism and regulation of signaling molecules. In: Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., (eds.), Plant Signaling Molecules, Woodhead Publishing, pp. 105–123. DOI: https://doi.org/10.1016/B978-0-12-816451-8.00006-X

Vangronsveld, J., Clijsters, H. (1994). Toxic effects of metals. In: Fargo, M.E., (eds.), Plants and the chemical elements: biochemistry, uptake, tolerance and toxicity.

VCH Press, Weinheim, Germany, pp. 149–177. https://doi.org/10.1002/9783527615919.ch6 DOI: https://doi.org/10.1002/9783527615919.ch6

Vincent, T. (2017). Total elemental analysis in clinical research using the Thermo Scientific iCAP TQ ICP-MS. Technical note, Thermo Fisher Scientific, Bremen, Germany TN43283-EN 0117.

Wang, Y., Sun, C., Zhao, X., Cui, B., Zeng, Z., Wang, A., Liu, G., Cui, H. (2016a). The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res. Lett., 11, 529. https://doi.org/10.1186/s11671-016-1721-1 DOI: https://doi.org/10.1186/s11671-016-1721-1

Wang, P., Lombi, E., Zhao, F-J., Kopittke, PM. (2016b). Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci., 21(8), 699–712. https://doi.org/10.1016/j.tplants.2016.04.005 DOI: https://doi.org/10.1016/j.tplants.2016.04.005

Wu, J., Wang, G., Vijver, M.G., Bosker, T., Peijnenburg, W.J.G.M. (2020). Foliar versus root exposure of AgNPs to lettuce: phytotoxicity, antioxidant responses and internal translocation. Environ. Pollut., 261, 114117. https://doi.org/10.1016/j.envpol.2020.114117 DOI: https://doi.org/10.1016/j.envpol.2020.114117

Yang, J., Cao, W., Rui, Y. (2017). Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J. Plant Interact., 12, 158–169. https://doi.org/10.1080/17429145.2017.1310944 DOI: https://doi.org/10.1080/17429145.2017.1310944

Zhang, Z., Pang, X., Duan, X., Ji, Z.L., Jiang, Y. (2005). Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chem., 90, 47–52. https://doi.org/10.1016/j.foodchem.2004.03.023 DOI: https://doi.org/10.1016/j.foodchem.2004.03.023

Zheng, X., Gong, M., Zhang, Q., Tan, H., Li, L., Tang, Y., Li Z., Peng, M., Deng, W. (2022). Metabolism and regulation of ascorbic acid in fruits. Plants, 11, 1602. https://doi.org/10.3390/plants11121602 DOI: https://doi.org/10.3390/plants11121602

Download

Published
2023-08-31



Andrzej Kalisz 
Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland https://orcid.org/0000-0002-8437-9307
Andrzej Kornaś 
Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30‐084 Kraków, Poland https://orcid.org/0000-0001-9945-3322
Dalibor Húska 
Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic https://orcid.org/0000-0003-3852-8751
Radim Zelinka 
Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic https://orcid.org/0000-0001-9591-1330
Agnieszka Sękara 
Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland https://orcid.org/0000-0002-9655-5742
Robert Pokluda 
Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic https://orcid.org/0000-0003-0492-6401
Andrzej Sałata 
Department of Vegetable and Medicinal Plants, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland https://orcid.org/0000-0002-8162-6587
Joanna Gil 
Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland https://orcid.org/0000-0001-9801-7983



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

1 2 3 > >>