Short-term effects of brassica cover crops on soil quality indicators in organic production in high tunnels

Iwona Domagała-Świątkiewicz

University of Agriculture in Krakow
https://orcid.org/0000-0001-6630-5286

Piotr Siwek

University of Agriculture in Krakow
https://orcid.org/0000-0002-0074-9738

Paulina Lalewicz

University of Agriculture in Krakow
https://orcid.org/0009-0005-0392-8781


Abstract

The use of cover crops is aimed at sustaining soil health and productivity in the context of agricultural intensification and accompanying soil degradation. While cover crops have been extensively studied in field production systems, limited research has been conducted concerning their application in high-tunnel vegetable production. This study aimed to assess the effects of turnip (Brassica napus subsp. napobrassica (L.) Jafri) and swede Brassica rapa subsp. Rapifera Metzg) cover crops (CCs) on soil physicochemical and biological properties in an organic high tunnel system in southern Poland in 2017–2019. The planting sequence was as follows: winter cover crops/pumpkin/romaine lettuce/broad bean/chilli pepper. Soil analyses included measurements of bulk density, water capacity, soil aggregation, soil organic carbon (SOC), available soil nutrients, as well as microbial abundance and diversity. Rape crops produced a higher aboveground dry biomass (4.11 t ha−1) than swede (2.85 t ha−1), and the N content in their biomass was 101 kg N ha−1 and 75 kg N ha−1, respectively. The results presented that CC residue significantly contributed to soil organic carbon stock, retention of plant-available nitrogen, and improvement of soil physical properties, especially wet aggregate stability. Soils with the highest SOC concentrations were associated with the highest bacterial and fungal abundance. The most significant number of mesophilic bacteria was detected in the soil where turnip was grown as a cover crop (7.6 × 107 cfu g−1 DM soil). Moreover, a higher abundance of the tested nitrogen cycle bacteria was found in the soils after CC cultivation compared to the control soils, particularly bacteria reducing NH4 +-N and NO₃⁻-N. These findings highlight the importance of cover crop management practices in high tunnels, as they influence the composition of the total bacterial community and the abundance of N-cycling microbial guilds.

Keywords:

swede (rutabaga), Brassica napus subsp. napobrassica (L.), turnip, Brassica rapa subsp. rapifera Metzg., soil organic carbon, nitrogen cycle bacteria, fungi

Adetunjia, A.T., Ncubeb, B., Mulidzic, R., Lewu, F.B. (2020). Management impact and benefit of cover crops on soil quality. A review. Soil Tillage Res., 204, 104717. https://doi.org/10.1016/j.still.2020.104717 DOI: https://doi.org/10.1016/j.still.2020.104717

Austin, E.E., Wickings, K., McDaniel, M.D., Robertson, F., Grandy, S. (2017). Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. Bioenergy, 9, 1252–1263. https://doi.org/10.1111/gcbb.12428 DOI: https://doi.org/10.1111/gcbb.12428

Barker, A.V., Pilbeam, D.J. (2017). Handbook of plant nutrition. 2nd ed. CRP Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/b18458 DOI: https://doi.org/10.1201/b18458

Berg, B. (2014). Decomposition patterns for foliar litter. A theory for influencing factors. Soil Biol. Biochem., 78, 222–232. https://doi.org/10.1016/j.soilbio.2014.08.005 DOI: https://doi.org/10.1016/j.soilbio.2014.08.005

Blanco-Canqui, H., Ruis, S.J. (2020). Cover crop impacts on soil physical properties: a review. Soil Sci. Soc. Am., 84, 1527–1576. https://doi.org/10.1002/saj2.20129 DOI: https://doi.org/10.1002/saj2.20129

Brennan, E.B., Acosta-Martinez, V. (2017). Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol. Biochem., 109, 188–204. https://doi.org/10.1016/j.soilbio.2017.01.014 DOI: https://doi.org/10.1016/j.soilbio.2017.01.014

Cherr, C.M., Scholberg, J.M.S., McSorley, R. (2006). Green manure approaches to crop production: a synthesis. Agron. J., 98, 302–319. https://doi.org/10.2134/agronj2005.0035 DOI: https://doi.org/10.2134/agronj2005.0035

Dean, J.E., Weil, R.R. (2009). Brassica cover crops for nitrogen retention in the mid-Atlantic Coastal plain. J. Environ. Qual., 38, 520–528. https:// doi.org/10.2134/jeq2008.0066 DOI: https://doi.org/10.2134/jeq2008.0066

Dinesh, R., Suryanarayana, M.A., Ghoshal, C.S., Sheeja, TE., Shiva, K.N. (2006). Long-term effects of leguminous cover crops on biochemical and biological properties in the organic and mineral layers of soils of a coconut plantation. Eur. J. Soil Biol., 42, 147–157. https:// doi.org/10.1016/j.ejsobi.2005.12.004 DOI: https://doi.org/10.1016/j.ejsobi.2005.12.004

Domagała-Świątkiewicz, I., Siwek, P., Bucki, P. (2019). Effect of hairy vetch (Vicia villosa L.) and vetch-rye (Secale sereale L.) cover crop and plastic mulching on high tunnel vegetable production under organic management. Biol. Agric. Hortic., 35(4), 248–262. https://doi.org/10.1080/01448765.2019.1625074 DOI: https://doi.org/10.1080/01448765.2019.1625074

Domagała-Świątkiewicz, I., Siwek, P. (2022). Effect of field pea (Pisum sativum subsp. arvense) and pea-oat (Avena sativa) biculture cover crops on high-tunnel vegetable production under organic management. Org. Agr., 2(3), 1–16. https://doi.org/10.1007/s13165-021-00383-x DOI: https://doi.org/10.1007/s13165-021-00383-x

Elbanna, K., El-Shahawy, R.M., Atalla, K.M. (2012). A new simple method for the enumeration of nitrifying bacteria in different environments. Plant Soil Environ., 58, 49–53. https:// doi.org/10.17221/412/2011-PSE DOI: https://doi.org/10.17221/412/2011-PSE

Farooq, M.S., Wang, X., Uzair, M., Fatima, H., Fiaz, S., Maqbool, Z., Rehman, O.U.,Yousuf, M., Khan, M.R. (2022). Recent trends in nitrogen cycle and eco-efficient nitrogen management strategies in aerobic rice system. Front Plant Sci., 13. https://doi.org/10.3389/fpls.2022.960641 DOI: https://doi.org/10.3389/fpls.2022.960641

Franche, C., Lindstrom, K., Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil., 321, 35–59. https://doi.org/10.1007/s11104-008-9833-8 DOI: https://doi.org/10.1007/s11104-008-9833-8

Geisseler, D., Horwath, W.R., Joergensen, R.G., Ludwig, B. (2010). Pathways of nitrogen utilization by soil microorganisms – a review. Soil Biol. Biochem., 42, 2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021 DOI: https://doi.org/10.1016/j.soilbio.2010.08.021

Gieske, M.F., Ackroyd, V.J., Baas, D.G., Mutch, D.R., Wyse, D.L., Durgan, B.R. (2016). Brassica cover crop effects on nitrogen availability and oat and corn yield. Agron. J., 108, 151–161. https://doi.org/10.2134/agronj2015.0119 DOI: https://doi.org/10.2134/agronj2015.0119

Grzyb, A., Wolna-Maruwka, A., Niewiadomska, A. (2021). The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy 11, 1415. http://doi.org/10.3390/AGRONOMY11071415 DOI: https://doi.org/10.3390/agronomy11071415

Han, S., Luo, X., Hao, X., Ouyang, Y., Zeng, L., Wang, L., Wen, S., Wang, B, Van Nostrand, J.D., Chen, W., Zhou, J., Huang, Q. (2021). Microscale heterogeneity of the soil nitrogen cycling microbial functional structure and potential metabolism. Environ. Microbiol., 23(2), 1199–1209. https://doi.org/10.1111/1462-2920.15348 DOI: https://doi.org/10.1111/1462-2920.15348

Haramoto, E.R., Gallandt, E.R. (2004). Brassica cover cropping for weed management: a review. Renew. Agric. Food Syst., 19(4), 187–198. http://doi.org/10.1079/RAFS200490 DOI: https://doi.org/10.1079/RAFS200490

Haruna, S.I., Anderson, S.H., Udawatta, R.P., Gantzer, C.J., Phillips, N.C., Cui, S., Gao, Y. (2020). Improving soil physical properties through the use of cover crops: a review. Agrosyst. Geosci. Environ., 1, 20105. https://doi.org/10.1002/agg2.20105 DOI: https://doi.org/10.1002/agg2.20105

Hayatsu, M., Tago, K., Saito, M. (2008). Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr., 54, 33–45. https://doi.org/10.1111/j.1747-0765.2007.00195.x DOI: https://doi.org/10.1111/j.1747-0765.2007.00195.x

Jiang, S., Jardinaud, M.F., Gao, J., Pecrix, Y., Wen, J., Mysore, K., Xu, P., Sanchez-Canizares, C., Ruan, Y., Li, Q., Zhu, M., Li, F., Wang, E., Poole, PS., Gamas, P., Murray, JD. (2021). NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 374(6567), 625–628. https://doi.org/10.1126/science.abg5945 DOI: https://doi.org/10.1126/science.abg5945

Kallenbach, C.M., Frey, S.D., Grandy, A.S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun., 7, 13630. https://doi.org/10.1126/science.abg594510.1038/ncomms13630 DOI: https://doi.org/10.1038/ncomms13630

Koudahe, K., Allen, S.C., Djaman, K. (2022). Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res., 10, 343–354. https://doi.org/10.1016/j.iswcr.2022.03.003 DOI: https://doi.org/10.1016/j.iswcr.2022.03.003

Larkin, R.P. (2020). Effects of cover crops, rotation, and biological control products on soil properties and productivity in organic vegetable production in the Northeastern US. Org. Agri., 10, 171–186. https://doi.org/10.1007/s13165-019-00257-3 DOI: https://doi.org/10.1007/s13165-019-00257-3

Lee, J., Kim, H.S., Jo, H.Y., Kwon, M.J. (2021). Revisiting soil bacterial counting methods: optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods. PLoS ONE, 16(2), e0246142. https://doi.org/10.1371/journal.pone.0246142 DOI: https://doi.org/10.1371/journal.pone.0246142

Magdoff, F., van Es, H. (2021). Building soils for better crops. 4rd ed. Sustainable Agriculture Research and Education, Waldorf.

Mooshammer, M., Wanek, W., Hammerle, L., Fuchslueger, L., Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger, K.M., Zechmeister-Boltenstern, S., Richter, A. (2014). Adjustment of microbial nitrogen use efficiency to carbon : nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun., 5, 3694. https://doi.org/10.1038/ncomms4694 DOI: https://doi.org/10.1038/ncomms4694

Ostrowska, A., Gawliński, S., Szczubiałka, Z. (eds.). (1991). Soil and plant analysis procedures. Institute Environment Protection, Warszawa. [In Polish]

Patkowska, E., Błażewicz-Woźniak, M., Konopiński, M., Wach, D. (2016). The effect of cover crops on the fungal and bacterial communities in the soil under carrot cultivation. Plant Soil Environ., 62, 237–242. https://doi.org/10.17221/117/2016-PSE DOI: https://doi.org/10.17221/117/2016-PSE

Peel, M.C., Finlayson, B.L., McMahon, T.A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 DOI: https://doi.org/10.5194/hess-11-1633-2007

Perkus, E.A., Grossman, J.M., Pfeiffer, A., Rogers, M.A., Rosen, C.J. (2022). Exploring overwintered cover crops as a soil management tool in upper-midwest high tunnels. HortScience, 57(2), 171–180. https://doi.org/10.21273/HORTSCI15987-21 DOI: https://doi.org/10.21273/HORTSCI15987-21

PN-A-75101-03:1990. Fruit and vegetables. Sample preparation and methods of physicochemical tests – Determination of dry matter content by gravimetric method. Polish Committee for Standardization. [In Polish]

PN-R-04032:1998. Soil and mineral materials. Sampling and determination of particle size distribution. Polish Committee for Standardization. [In Polish]

Poeplau, C., Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ., 200, 33–41. https://doi.org/10.1016/j.agee.2014.10.024 DOI: https://doi.org/10.1016/j.agee.2014.10.024

Rajta, A., Bhatia, R., Setia, H., Pathania, P. (2020). Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J. Appl. Microbiol., 128, 1261–1278. http://doi.org/10.1111/JAM.14476 DOI: https://doi.org/10.1111/jam.14476

Robacer, M., Canali, S., Kristenses, H.K., Bavec, F., Mlakar, S.G., Jakop, M., Bavec, M. (2016). Cover crops in organic field vegetable production. Sci. Hortic., 208, 104–110. https://doi.org/10.1016/j.scientia.2015.12.029 DOI: https://doi.org/10.1016/j.scienta.2015.12.029

Robertson, G., Vitousek, P. (2009). Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour., 34, 97–125. https://doi.org/10.1146/annurev.environ.032108.105046 DOI: https://doi.org/10.1146/annurev.environ.032108.105046

Romdhane, S., Spor, A., Busset, H., Falchetto, L., Martin, J., Bizouard, F., Bru, D., Breuil, M.C., Philippot, L., Cordeau, S. (2019). Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front Microbiol., 10, 1618. https://doi.org/10.3389/fmicb.2019.01618 DOI: https://doi.org/10.3389/fmicb.2019.01618

Saleem, M., Pervaiz, Z.H., Contreras, J., Lindenberger, J.H., Hupp, B.M., Chen, D., Zhang, Q., Wang, C., Iqbal, J., Twigg, P. (2020). Cover crop diversity improves multiple soil properties via altering root architectural traits. Rhizosphere, 16, 100248. https://doi.org/10.1016/j.rhisph.2020.100248 DOI: https://doi.org/10.1016/j.rhisph.2020.100248

Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S. (2020). Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 12, 9808. https://doi.org/10.3390/SU12239808 DOI: https://doi.org/10.3390/su12239808

Scavo, A., Restuccia, A., Abbate, C., Lombaedo S., Fontanazza, S., Pandino, G., Anastasi, U., Mauromicale, G. (2021). Trifolium subterraneum cover cropping enhances soil fertility and weed seedbank dynamics in a Mediterranean apricot orchard. Agron. Sustain. Dev., 41, 70. https://doi.org/10.1007/s13593-021-00721-z DOI: https://doi.org/10.1007/s13593-021-00721-z

Scavo, A., Fontanazza, S., Restuccia, A., Pesce, G.R., Abbate, C., Mauromicale, G. (2022).

The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev., 42, 93. https://doi.org/10.1007/s13593-022-00825-0 DOI: https://doi.org/10.1007/s13593-022-00825-0

Schloter, M., Nannipieri, P., Sørensen, S.J., van Elsas, J.D. (2018). Microbial indicators for soil quality. Biol. Fertil. Soils, 54, 1–10. https://doi.org/10.1007/s00374-017-1248-3 DOI: https://doi.org/10.1007/s00374-017-1248-3

Schlüter, S., Weller, U., Vogel, H.J. (2011). Soil-structure development including seasonal dynamics in a long-term fertilization experiment. J. Plant Nutr. Soil Sci., 174(3), 395–403. https://doi.org/10.1002/jpln.201000103 DOI: https://doi.org/10.1002/jpln.201000103

Siwek, P., Domagała-Świątkiewicz, I., Kalisz, A., Bucki, P. (2020). Microclimatic conditions and physico-chemical properties of soil in intensive ecological vegetable crop rotation in high tunnel. Acta. Sci. Pol. Hortorum Cultus, 19(3), 73–87. https://doi.org/10.24326/asphc.2020.3.7 DOI: https://doi.org/10.24326/asphc.2020.3.7

Taylor, A.E., Bottomley, P.J. (2006). Nitrite production by Nitrosomonas europaea and Nitrosospira sp. AV in soils at different solution concentrations of ammonium. Soil Biol. Biochem., 38, 828–836. https:// doi.org/10.1016/j.soilbio.2005.08.001 DOI: https://doi.org/10.1016/j.soilbio.2005.08.001

Thorup-Kristensen, K., Magid, J., Jensen, L.S. (2003). Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron., 79, 227–302. https:// doi.org/10.1016/S0065-2113(02)79005-6 DOI: https://doi.org/10.1016/S0065-2113(02)79005-6

Thorup-Kristensen, K., Bodin Dresboll, D., Kristensen, L.H. (2012). Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. Eur. J. Agron., 37, 66–82. https:// doi.org/10.1016/j.eja.2011.11.004 DOI: https://doi.org/10.1016/j.eja.2011.11.004

Wang, M., Pendall, E., Fang, C., Li, B., Nie, M. (2018). A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agric. Ecosyst. Environ., 266, 49–54. https:// doi.org/10.1016/j.agee.2018.07.019 DOI: https://doi.org/10.1016/j.agee.2018.07.019

Wistreich, G.A., Lechtman, M.D. (1988). Laboratory exercises in microbiology. 6th ed. Macmillan Pub., New York.

Xiang, X., Liu, J., Zhang, J., Li, D., Xu, C., Kuzyakov, Y. (2020). Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil Till. Res., 196, 104491. https://doi.org/10.1016/j.still.2019.104491 DOI: https://doi.org/10.1016/j.still.2019.104491

Download

Published
2023-12-22



Iwona Domagała-Świątkiewicz 
University of Agriculture in Krakow https://orcid.org/0000-0001-6630-5286
Piotr Siwek 
University of Agriculture in Krakow https://orcid.org/0000-0002-0074-9738
Paulina Lalewicz 
University of Agriculture in Krakow https://orcid.org/0009-0005-0392-8781



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)