VARIATIONS IN GROWTH AND PHOTOSYNTHETIC PARAMETERS OF SOME CLONAL SEMI-DWARFING AND VIGOROUS SEEDLING PEAR (Pyrus spp.) ROOTSTOCKS IN RESPONSE TO DEFICIT IRRIGATION

Majid Zohouri

Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran

Hamid Abdollahi

Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Isa Arji

Crop and Horticulture Research Department, Kermanshah Agricultural and Natural Resources Research and Education center, AREEO, Kermanshah, Iran

Vahid Abdossi

Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran


Abstract

A greenhouse experiment was conducted to estimate the impacts of various deficit irrigation regimes (DIR) as 100 (control), 75 (medium DIR, MDIR) and 50% (severe DIR, SDIR) of field capacity (FC) on the growth and photosynthetic traits of five rootstocks (two vigorous seedling including Pyrus betulifolia and Dargazi seedling (P. communis L.) as well as three clonal semi-dwarfing rootstocks including OH×F69, OH×F87 and Pyrodwarf in 2016. Although in all studied rootstocks the growth and photosynthetic parameters negatively affected under MDIR and SDIR conditions, but P. betulifolia and Pyrodwarf rootstocks had the better growth rate, chlorophylls, total carbohydrates, relative water content, sub-stomatal CO2 (Ci), photosynthesis rate (PN) and instantaneous water use efficiency compared to others. Therefore, the use of P. betulifolia and Pyrodwarf (as drought tolerance rootstocks) could be more appropriate under various DIR conditions.

Keywords:

carbohydrates, chlorophylls drought tolerance, P. betulifolia, Pyrodwarf

Abdollahi, H., Ruzzi, M., Rugini, E., Muleo, R. (2004). In vitro system for studying the interaction between Erwinia amylovora and genotypes of pear. Plant Cell Tissue Org. Cul., 79, 203–212. DOI: 10.1007/s11240-004-0661-0

Ahmad, P. (2016). Water stress and crop plants: a sustainable approach. ed. John Wiley & Sons, Ltd. India.

Arabshahi, M., Mobasser, H.R. (2017). Effect of drought stress on carotenoid and chlorophyll contents and osmolytes accumulation. Chem. Res. J., 2(3), 193–197.

Arji, I., Arzani, K. (2008). Effect of water stress on some biochemical changes in leaf of five olive (Olea europaea L.) cultivars. Acta Hortic., 791, 523–526.

Azevedo Neto, A.D., Nogueira, R.J.M.C., Melo Filho, P.A., Santos, R.C. (2010). Physiological and biochemical responses of peanut genotypes to water deficit. J. Plant Interact., 5, 1–10.

Behboudian, M.H., Lawes, G.S. Griffiths, K.M. (1994). The influence of water deficit on water relations, photosynthesis and fruit growth in Asian pear (Pyrus serotina Rehd.). Sci. Hortic., 60, 89–99.

Bosa, K., Jadczuk-Tobjasz, E. Kalaji, M.H. (2016). Photosynthetic productivity of pear trees grown on different rootstocks. Ann. Bot. (Roma), 6, 1–7. DOI: 10.4462/annbotrm-13172

Brodribb, T.J., Mcadam, S.A.M. (2011). Passive origins of stomatal control in vascular plants. Science, 331, 582–585. DOI: 10.1126/science.1197985

Campbell, J. (2003). Pear rootstock, Agfact H4.1.15, Orange Agricultural Institute, Orange.

Cheng, F., Sun, H., Shi, H., Zhao, Zh., Wang, Q., Zhang, J., (2012). Effects of regulated deficit irrigation on the vegetative and generative properties of the pear cultivar ‘Yali’. J. Agric. Sci. Technol., 14, 183–194.

Einhorn, T.C., Castagnoli, S., Smith, T.J., Turner, J., Meilke, E. (2013). Summary of the 2002 Pacific northwest of USA pear rootstock trials: performance of ’d’Anjou’ and ‘Golden Russet Bosc’ pear on eight Pyrus rootstocks. J. Am. Pomol. Soc., 67, 80–88.

Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M. (2012). Drought stress in plants: an overview, In: Plant Responses to Drought Stress, Aroca, R. (ed.), Springer, Heidelberg–New York–Dordrecht–London.

Gago, J., Daloso, D.M., Figueroa, C.M., Flexas, J., Fernie, A.R., Nikoloski, Z. (2016). Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: a multispecies meta-analysis approach. Plant Physiol., 171(1), 265–279. DOI: 10.1104/pp.15.01660

Gago, J., Douthe, C., Florezsarasa, I., Escalona, J.M., Galmes, J., Fernie, A.R., Flexas, J., Medrano, H. (2014). Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci., 226, 108–119. DOI: 10.1016/j.plantsci.2014.04.007

Galindo, A., Collado-González, J., Grinán, I., Corell, M., Centeno, A., Martín-Palomo, M.J., Girón, I.F., Rodríguez, P., Cruz, Z.N., Memmi, H., Carbonell-Barrachina, A.A., Hernández, F., Torrecillas, A., Moriana, A., Pérez-López, D. (2018). Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manag., 202, 311–324. DOI: 10.1016/j.agwat.2017.08.015

García-Tejero, I.F., Moriana, A., Rodríguez-Pleguezuelo, C.R., Durán-Zuazo, V.H., Egea, G. (2018). Sustainable deficit-irrigation management in almonds (Prunus dulcis L.): different strategies to assess the crop-water status. In: Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops, García-Tejero, I.F., Durán, V.H. (eds.). Elsevier, Academic Press, 271–298.

Giuliani, M.M., Carucci, F., Nardella, E., Francavilla, M., Ricciardi, L., Lotti, C., Gatta, G. (2018). Combined effects of deficit irrigation and strobilurin application on gas exchange, yield and water use efficiency in tomato (Solanum lycopersicum L.). Sci. Hortic., 233, 149–158. DOI: 10.1016/j.scienta.2018.01.052

Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W., Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olives (Olea europaea L.) cultivars. Sci. Hortic., 119, 257–263.

Iglesias, I., Asin, L. (2011). Agronomical performance and fruit quality of ‘Conference’ pear grafted on clonal quince and pear rootstocks. Acta Hortic., 903, 439–442. DOI: 10.17660/ActaHortic.2011.903.59

Iglesias, I., Batlle, I. (2011). Agronomical performance and fruit quality of ‘Conference’ on some Cydonia and Pyrus rootstocks. Acta Hortic., 909, 195–200. DOI: 10.17660/ActaHortic.2011.909.20

Ikinci, A., Bolat, I., Ercisli, S., Kodad, O. (2014). Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biol. Res., 47:71.

Janssens, P., Elsen, F., Vandendriessche, H., Deckers, T., Schoofs, H., Verjans, W. (2011). Effects of regulated deficit irrigation on pear trees cv. ‘Conference’ under temperate zone climate. Acta Hortic., 889, 281–289.

Jie, Z., Yuncong, Y., Yuping, Z. (2008). Effects of drought stress on the photosynthesis of wild apricot. Acta Hortic., 772, 287–290.

Leblay, C., Chevreau, E., Robin, L.M. (1991). Adventitious shoot regeneration from in vitro leaves of several pear cultivar (Pyrus communis L.). Plant Cell Tissue Org. Cul., 25, 99–105.

Leyva, A., Quintana, A., Sánchez, M., Rodríguez, E.N., Cremata, J., Sánchez, J.C. (2008). Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation. Biologicals, 36, 134–141.

Li, X., Li, X., Wang, T. (2016). Nutritional composition of pear cultivars (Pyrus spp.). In: Nutritional Composition of Fruit Cultivars, Preedy, V.R. (ed.). Academic Press, San Diego, 573–608.

Liu, F., Andersen, M.N., Jacobsen, S.E., Jensen, C.R. (2005). Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ. Exp. Bot., 54, 33–40.

Losciale, P., Zibordi, M., Manfrini, L., Grappadelli, L.C. (2008). Effects of rootstock on pear photosynthetic efficiency. Acta Hortic., 800, 241–248.

Marsal, J., Behboudian, M.H., Mata, M., Basile, B., Del Campo, J. (2010). Fruit thinning in ‘Confrence’ pear grown under deficit irrigation to optimise yield and to improve tree water status. J. Hortic. Sci. Biotechnol., 85(2), 125–130. DOI: 10.1080/14620316.2010.11512642

Mcdowell, N.G. (2011). Mechanisms linking drought, hydraulics carbon metabolism, and vegetation mortality. Plant Physiol., 155, 1051–1059. DOI: 10.1104/pp.110.170704

Mishra, S.R. (2004). Photosynthesis in plants. Discovery Publishing House, New Delhi, India.

Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol., 69, 1376–1381. DOI: 10.1104/pp.69.6.1376

Necas, T., Kosina, J. (2008). Vegetative propagation of pear and quince rootstocks using hardwood cuttings. Acta Hortic., 800, 701–706. DOI: 10.17660/ActaHortic.2008.800.95

Ohashi, Y., Nakayama, N., Saneoka, H., Fujita, K. (2006). Effects of drought on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol. Plant., 50(1), 138–141. DOI: 10.1007/s10535-005-0089-3

Ou, C., Jiang, S., Wang, F., Tang, C., Hao, N. (2015). An RNA-Seq analysis of the pear (Pyrus communis L.) transcriptome, with a focus on genes associated with dwarf. Plant Gene, 4, 69–77. DOI: 10.1016/j.plgene.2015.08.003

Pinheiro, C., Chaves, M.M. (2011). Photosynthesis and drought: can we make metabolic connections from available data?. J. Exp. Bot., 62(3), 869–882. DOI: 10.1093/jxb/erq340

Podlaski, S., Pietkiewicz, S., Chołuj, D., Horaczek, T., Wiśniewski, G., Gozdowski, D., Kalaji, H.M. (2017). The relationship between the soil water storage and water-use efficiency of seven energy crops. Photosynthetica, 55, 210–218. DOI: 10.1007/s11099-017-0697-0

Ramalho, J.C., Zlatev, Z.S., Leitão, A.E., Pais, I.P., Fortunato, A.S., Lidon, F.C. (2013). Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biol., 16(1), 133–146. DOI: 10.1111/plb.12018

Rigosa, M.J., González, L. (2001). Plant water status. In: Handbook of Plant Ecophysiology Techniques, Reigosa Roger M.J. (ed.). Kluwer Academic Publishers, Dordrecht, The Netherlands, 185–191.

Ripoll, J., Urban, L., Staudt, M., Lopez-Lauri, F., Bidel, L.P.R., Bertin, N. (2014). Water shortage and quality of fleshy fruits–making the most of the unavoidable. J. Exp. Bot., 65, 4097–4117.

Romero, P., Navarro, J.M., García, F., Botía Ordaz, P. (2004). Effects of regulated deficit irrigation during the preharvest period on gas exchange, leaf development and crop yield of mature almond trees. Tree Physiol., 24, 303–312.

Santana-Vieira, D.D.S., Freschi, L., Almeida, L.A.H., Neves, D.M., Moraes, D.H.S., Santos, L.M., Bertolde, F.Z., Soares Filho, W.S., Coelho Filho, M.A., Gesteira, A.S. (2016). Survival strategies of citrus rootstocks subjected to drought. Sci. Rep., 6, 38775.DOI: 10.1038/srep38775

Shahenshah, M., Isoda, A. (2010). Effects of water stress on leaf temperature and chlorophyll fluorescence parameters in cotton and peanut. Plant Prod. Sci., 13(3), 269–278. DOI: 10.1626/pps.13.269

Shanker, A.K., Venkateswarlu, B. (2011). Abiotic Stress in Plants-Mechanisms and Adaptations ed. InTech Open Access Publisher, Rijeka, Croatia.

Sharma, R., Bhardwaj, R., Thukral, A.K., Handa, N., Kaur, R., Kumar, V. (2014). Osmolyte Dynamics: New strategies for crop tolerance to abiotic stress signals. In: Emerging Technologies and Management of Crop Stress Tolerance, Ahmad, P., Rasool, S. (eds.). Vol. 2: A Sustainable Approach. Elsevier Science, New York, 405–430.

Sharma, S., Sharma, N. (2008). Rootstocks affect growth, water relations, gas exchange, and anatomy of ‘Flemish Beauty’ pear under water stress. J. Hortic. Sci. Biotechnol., 83, 658–662. DOI: 10.1080/14620316.2008.11512439

Siddique, Z., Jan, S., Imadi, S.R., Gul, A., Ahmad, P. (2016). Drought stress and photosynthesis in plants. In: Water Stress and Crop Plants, Ahmad, P. (ed.). John Wiley & Sons, Ltd., 1–11.

Singh, M., Kumar, J., Singh, S., Singh, V.P., Prasad, S.M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev. Environ. Sci. BioTechnol., 14(3), 407–426.

Stern, R.A., Doron, I., Redel, G., Raz, A., Goldway, M., Holland, D. (2013). Lavi 1-A new Pyrus betulifolia rootstock for ‘Coscia’ pear (Pyrus communis) in the hot climate of Israel. Sci. Hortic., 161, 293–299.

Sun, G., Li, W., Abulitifu, Y. (2016). Effects of regulated deficit irrigation on twig water potential of Korla Fragrant pear. Agric. Sci. Technol., 17(8), 1802–1833.

Tamura, F. (2012). Recent advances in research on Japanese pear rootstocks. J. Japan. Soc. Hort. Sci., 81(1), 1–10. DOI: 10.2503/jjshs1.81.1

Vats, S. (2018). Biotic and abiotic stress tolerance in plants. Springer Nature Singapore Pte Ltd.

Wu, X., Yin, H., Shi, Z., Chen, Y., Qi, K., Qiao, X., Wang, G., Cao, P., Zhang, S. (2018). Chemical composition and crystal morphology of epicuticular wax in mature fruits of 35 pear (Pyrus spp.) cultivars. Front. Plant Sci., 9, 679. DOI: 10.3389/fpls.2018.00679

Wu, Y., Zhao, Z., Wang, W., Ma, Y., Huang, X. (2013). Yield and growth of mature pear trees under water deficit during slow fruit growth stages in sparse planting orchard. Sci. Hort., 164, 189–195. DOI: 10.1016/j.scienta.2013.09.025

Yin, C.Y., Berninger, F., Li, C.Y. (2006). Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica, 44, 62–68. DOI: 10.1007/s11099-005-0159-y

Zhang, J., Jiang, H., Song, X., Jin, J., Zhang, X. (2018). The responses of plant leaf CO2/H2O exchange and water use efficiency to drought: a meta-analysis. Sustainability, 10, 551.

Download

Published
2020-04-24



Majid Zohouri 
Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran
Hamid Abdollahi 
Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Isa Arji 
Crop and Horticulture Research Department, Kermanshah Agricultural and Natural Resources Research and Education center, AREEO, Kermanshah, Iran
Vahid Abdossi 
Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)