Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Microbial and physico-chemical responses of the soil to intensive onion and pepper cropping

DOI: https://doi.org/10.24326/asphc.2025.5553
Submitted: 2 June 2025
Published: 13.10.2025

Abstract

Vegetable cropping systems are high-input and generally require large quantities of fertilization, protection, frequent irrigation, and repeated tillage operations. Consequently, an increase in vegetable production may have serious impact on soil health and functions. The aim of the study was to assess microbiological, chemical and physical indicators of soil fatigue in two of the most intensive vegetable crops in Poland: onions and peppers, to identify which cultivation practices are most responsible for the adverse changes. The results have shown, that the most reliable indices in cultivation of these vegetables occurred dehydrogenase activity, organic matter content and soil physical properties. The other studied parameters such as pH, nutrients availability and microbial abundance seem to be less sensitive factors. In all soils, where the onion and pepper were produced, the dehydrogenase activity was significantly lower as compared to non-cultivated soil. It corresponded with reduced content of organic matter. In onion production numerous runs by agricultural machinery during field operations lead to soil compaction, breakdown of its structure and organic matter reduction. Moreover, poor crop rotation and low surface coverage with vegetation accelerate these effects and deteriorate the biological functioning of the soil. In turn, in pepper cultivation, monoculture with high mineral fertilization, cause soil acidification and adverse effect on microorganisms, decreasing their activity, but increasing the proportion of fungi in microbial community. Intense mineral input, resulting in high concentration of nutrients in soil, may be a reason of reduced organic carbon content, despite application of organic manures.

References

  1. Alef, K., Nannipieri, P. (1995). Enzyme activities. In: K., Alef, P., Nannipieri (eds), Methods in applied soil microbi-ology and biochemistry. Academic Press London, New York, San Francisco.
  2. Anthony, M.A., Crowther, T.W., Maynard, D.S., van den Hooden, J., Averill, C. (2020). Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth, 2(4), 349–360. http://doi.org/10.1016/j.oneear.2020.03.006
  3. Antweiler, R.C., Patton, C.J., Taylor, E. (1996). Automated colorimetric methods for determination nitrate plus ni-trite, nitrite, ammonium and orthophosphate ions in natural water samples. In: U.S. Geological Survey, Open-File Report 93–638. Denver, Colorado, 1–28.
  4. Bashir, H., Zafar, S.A., Rehman, R.S., Khalid, M.N., Amjad, I. (2023). The importance of soil organic matter (SOM) on soil productivity and plant growth. Biol. Agric. Sci. Res. J., 11. http://doi.org/10.54112/basrj.v2023i1.11
  5. Bayata, A. (2024). Soil degradation: contributing factors and extensive impacts on agricultural practices and eco-logical systems – systematic review. J. Agric. Environ. Sci., 13, 16–34. http://doi.org/10.15640/ijhs.v13a2
  6. Bastida, F., Zsolnay, A., Hernández, T., García, C. (2008). Past, present and future of soil quality indices: a biologi-cal perspective. Geoderma, 147, 159–171. http://doi.org/10.1016/j.geoderma.2008.08.007
  7. Błońska, E., Lasota, J., Zwydak, M. (2017). The relationship between soil properties, enzyme activity and land use. For. Res. Pap., 78(1), 39–44. http://doi.org/10.1515/frp-2017-0004
  8. Bonanomi, G., D’Ascoli, R., Antignani, V., Capodilupo, M., Cozzolino, L., Marzaioli, R., Puopolo, G., Rutigliano, F.A., Scelza, R., Scotti, R., Rao, M.A., Zoina, A. (2011). Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Appl. Soil Ecol., 47(3), 184–194. http://doi.org/10.1016/j.apsoil.2010.12.007
  9. Bonanomi, G., De Filippis, F., Cesarano, G., La Storia, A. (2016). Organic farming induces changes in soil microbiota that affect agroecosystem functions. Soil Biol. Biochem., 103, 327–336. http://doi.org/10.1016/j.soilbio.2016.09.005
  10. Brzezińska, M., Włodarczyk, T. (2005). Enzymy wewnątrzkomórkowych przemian redoks (oksydoreduktazy) [Enzymes of intracellular redox metabolism (oxidoreductases)]. Acta Agroph., Rozpr. Monogr., 3, 11–26.
  11. Casida, L., Johnson, J., Klein, D. (1964). Soil dehydrogenase activity. Soil Sci., 98, 371–376.
  12. Chakraborty, A., Chakrabarti, K., Chakraborty, A., Ghosh, S. (2011). Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol. Fertil. Soils, 47, 227–233. http://doi.org/10.1007/s00374-010-0509-1
  13. Chang, E.H., Chung, R.S., Tsai, Y.H. (2007). Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr., 53, 132–140. http://doi.org/10.1111/j.1747-0765.2007.00122.x
  14. Chaudhry, H., Vasava, H.B., Chen, S., Saurette, D., Beri, A., Gillespie, A., Biswas, A. (2024). Evaluating the soil quality index using three methods to assess soil fertility. Sensors, 24, 864. http://doi.org/10.3390/s24030864
  15. Ciarkowska, K., Sołek-Podwika, K. (2012). Influence of intensive vegetable cultivation in ground and under foil tunnels on the enzymatic activity of the soil. Pol. J. Environ. Stud., 21(6), 1571–1575. https://www.researchgate.net/publication/289043250 [date of access: 21.02.2025]
  16. De Corato, U. (2020). Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: a review under the perspective of a circular economy. Sci. Total Environ., 738, 139840. http://doi.org/10.1016/j.scitotenv.2020.139840
  17. Dhingra, O.D., Sinclair J.B. (1995). Basic plant pathology methods. CRC Press, Inc. London, Tokyo.
  18. European Environment Agency, Arias-Navarro, C., Baritz, R., Jones, A. (2024). The state of soils in Europe – fully evidenced, spatially organised assessment of the pressures driving soil degradation. Publications Office of the European Union, https://data.europa.eu/doi/10.2760/7007291 [date of access: 30.05.2025].
  19. Fontaine, S., Marotti, A., Abbadie, L. (2003). The priming effect of organic matter: a question of microbial competi-tion. Soil Biol. Biochem., 35, 837–843. http://doi.org/10.1016/S0038-0717(03)00123-8
  20. Gil-Sotres, F., Trasar-Cepeda, C., Leiros, M.C., Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem., 7, 877–887. http://doi.org/10.1016/j.soilbio.2004.10.003
  21. Gould, W.D., Hagedorn, C., Bardinelli, T.R., Zablotowicz, R.M. (1985). New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl. Environ. Microbiol., 49, 28–32.
  22. Goździewicz-Biechońska, J. (2018). Przeciwdziałanie degradacji ziemi i gleby jako globalne wyzwanie dla prawa [Dealing with land and soil degradation as a global legal challenge]. Przegl. Prawa Rol., 1(22), 41–57.
  23. Hattori, R., Hattori, T. (1980). Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J. Gen. Appl. Microbiol. 26, 1–14.
  24. Jacobsen, C.S., Hjelmsø, M.H. (2014). Agricultural soils, pesticides and microbial diversity. Curr. Op. Biotech., 27, 15–20. http://doi.org/10.1016/j.copbio.2013.09.003
  25. Jakab, G., Madarász, B., Masoudi, M., Karlik, M., Király, C., Zacháry, D., Filep, T., Dekemati I., Centeri, C., Al-Graiti, T., Szalai, Z. (2023). Soil organic matter gain by reduced tillage intensity: storage, pools, and chemical composition. Soil Till. Res., 226, 105584. http://doi.org/10.1016/j.still.2022.105584
  26. Jarecka-Boncela, A., Anyszka, Z., Doruchowski, G., Felczyński, K., Grzegorzewska, M., Kałużna, M., Komorowska, B., Ptaszek, M., Wrzodak, R. (2017). Metodyka integrowanej ochrony cebuli [Methodology for integrated onion protection]. Instytut Ogrodnictwa, Skierniewice.
  27. Jończyk, K., Jadczyszyn, J., Filipiak, K., Stuczyński, T. (2008). Przestrzenne zróżnicowanie zawartości materii orga-nicznej w glebach Polski w kontekście ochrony gleb i ich rolniczego wykorzystania [Spatial differentiation of or-ganic matter content of Polish soils in the context of soil protection and its agricultural use]. Stud. Rap. IUNG – PIB, 12, 133–142. http://opr.iung.pulawy.pl/publikacje/Jo%C5%84czyk,%20Jadczyszyn,%20Filipiak,%20Stuczy%C5%84ski%202008.pdf [date of access: 12.05.2025]
  28. Kahsay, A., Haile, M., Gebersamuel, G., Mohammed, M. (2025). Developing soil quality indices to investigate deg-radation impacts of different land use types in Northern Ethiopia. Heliyon, 11, e41185. http://doi.org/10.1016/j.heliyon.2024.e41185
  29. Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7, 5875–5895.
  30. Liang, Y., Lin, X., Yamada, S., Inoue, M., Inosako, K. (2013). Soil degradation and prevention in greenhouse pro-duction. Proc. Inter. Conf. Combating Land Degradation an Agricultural Areas, Zi’An City, PR China, 11–15 October 2010. SpringerPlus, 2(Supl. 1), S10. http://www.springerplus.com/content/2/S1/S10 [date of access: 21.02.2025]
  31. Lu, M., Powlson, D.S., Liang, Y., Yao, Z., Chadwick, D.R., Long, S., Liu, D., Chen, X. (2021). Significant soil degra-dation is associated with intensive vegetable cropping in subtropical area: a case study in southwest China. Soil, 7, 333–346. http://doi.org/10.5194/soil-7-333-2021
  32. Luo, P., Han, X., Wang, Y., Han, M., Shi, H., Liu, N., Bai, H. (2015). Influence of long-term fertilization on soil mi-crobial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol., 65, 533–542. http://doi.org/10.1007/s13213-014-0889-9
  33. Mahala, D.M., Maheshwari, H.S., Yadar, R.K., Prabina, B.J., Bharti, A., Reddy, K.K., Kumawat, C., Ramesh, A. (2020). Microbial transformation of nutrients in soil: an overview. In: S.K., Sharma, U.B., Singh, P.K., Sahu, H.V., Singh, P.K. Sharma, (eds), Rhizosphere microbes. Microorganisms for sustainability. Springer, Singapore, 175–211. http://doi.org/10.1007/978-981-15-9154-9_7
  34. Mar Guerrero, M., Guiaro, P., Martinez-Lluch, C., Tello, J.C., Lacasa, A. (2014). Soil fatigue and its specifity towards pepper plants in greenhouses. Spanish J. Agric. Res., 12(3), 644–652. http://doi.org/10.5424/sjar/2014123-5701
  35. Martin, P. (1950). Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci., 69, 215–232.
  36. Mayer, Z., Sasvári, Z., Szentpéteri, V., Pethöné Rétháti, B., Vajna, B., Posta, K. (2019). Effect of long-term cropping system on the diversity of the soil bacterial communities. Agronomy, 9, 878. http://doi.org/10.3390/agronomy9120878
  37. Mehmood, N., Saeed, M., Zafarullah, S., Hyder, S., Rizvi, Z.F., Gondal, A.S., Jamil, N., Iqbal, R., Ali, B., Ercisli, S., Kupe, M. (2023). Multifaceted impacts of plant-beneficial Pseudomonas spp. in managing various plant diseas-es and crop yield improvement. ACS Omega. http://doi.org/10.1021/acsomega.3c00870
  38. Midler, E. (2022). Environmental degradation: impacts on agricultural production. Institute for European Environ-mental Policy. Available: https://ieep.eu/wp-content/uploads/2022/12/Policy-brief_Environmental-degradation.-Impacts-on-agricultural-production_IEEP-2022.pdf [date of access: 15.05.2025].
  39. Mohammadi, K., Gholamreza, H., Khalesro, S., Sohrabi, Y. (2011). Soil management, microorganisms and organic matter interactions: a review. Afr. J. Biotech., 10(84), 19840–19849. http://doi.org/10.5897/AJBX11.006
  40. Ostrowska, A., Gawliński, S., Szczubiałka, Z. (1991). Metody analizy i oceny właściwości gleb i roślin [Methods of analysis and evaluation of soil and plant properties]. Instytut Ochrony Środowiska, Warszawa.
  41. PN-EN 13041: 2002. Soil improvers and growing media. Determination of physical properties –Dry bulk density, air volume, water volume, shrinkage value and total pore space. Polish Standards, PKN, Warszawa.
  42. PN-EN 13039: 2002. Soil improvers and growing media. Determination of organic matter content and ash. Polish Standards, PKN, Warszawa.
  43. Qu, Y., Tang, J., Li, Z., Zhou, Z., Wang, J., Wang, S., Cao, Y. (2020). Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of northeast China. Sustainability, 12, 10095 http://doi.org/10.3390/su122310095.
  44. Raiesi, F., Beheshti, A. (2015). Microbiological indicators of soil quality and degradation following conversion of native forests to continuous croplands. Ecol. Indic., 50, 173–185. http://doi.org/10.1016/j.ecolind.2014.11.008
  45. Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., Rao, M.A. (2015). Organic amendments as suitable tool to recovery fertility in intensive agricultural system. J. Soil Sci. Plant Nutr., 15(2), 333–352. http://doi.org/10.4067/S0718-95162015005000031
  46. Smreczak, B., Jadczyszyn, J. (2017). Badania właściwości gleb użytkowanych rolniczo w latach 1992–1997 i ich wykorzystanie w ocenach rolniczej przestrzeni produkcyjnej [Studies on the properties of agriculturally used so-ils from 1992 to 1997 and their use in assessments of agricultural production space]. Stud. Rap. IUNG – PIB, 51(5), 41–56. http://doi.org/10.26114/sir.iung.2017.51.03
  47. Statistics Poland. Production of Agricultural and Horticultural Crops in 2024. Available online:
  48. https://stat.gov.pl/en/topics/agriculture-forestry/agricultural-and-horticultural-crops/production-of-agricultural-and-horticultural-crops-in-2024,2,9.html [date of access: 28.07.2025].
  49. Stea, T.H., Nordheim, O., Bere, E., Stornes, P., Eikemo, T.A. (2020). Fruit and vegetable consumption in Europe according to gender, educational attainment and regional affiliation – A cross-sectional study in 21 European countries. PLoS ONE 15(5), e0232521. http://doi.org/10.1371/journal.pone.0232521
  50. Tian, W., Wang, L., Li, Y., Zhuang, K., Li, G., Zhang, J., Xiao, X., Xi, Y. (2015). Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric. Ecosyst. Environ., 213, 219–227. http://doi.org/10.1016/j.agee.2015.08.009
  51. Trivedi, P., Delgado-Baquerizo, M., Anderson, C., Singh, B.K. (2016). Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front. Plant Sci., 7. http://doi.org/10.3389/fpls.2016.00990
  52. Walinga, J., van der Lee, J.J., Houba, V.J.G., van Varak, W., Nowozamsky, I. (1995). Plant analysis manual. Kluwer Academic Publishers, Dordrecht.
  53. Wolińska, A., Stępniewska, Z. (2012). Dehydrogenase activity in the soil environment. In: R.A. Canuto (ed.), Dehy-drogenases. IntechOpen. http://doi.org/10.5772/2903
  54. Wolińska, A., Stępniewska, Z., Pytlak, A. (2015). The effect of environmental factors on total soil DNA content and dehydrogenase activity. Arch. Biol. Sci. Belgrade, 67(2), 493–501. http://doi.org/10.2298/ABS140120013W
  55. Wolińska, A., Banach, A., Szafranek-Nakonieczna, A., Stępniewska, Z., Błaszczyk, M. (2018). Easily degradable carbon – an indicator of microbial hotspots and soil degradation. Inter. Agroph. 32, 123–131. http://doi.org/10.1515/intag-2016-0098
  56. Wolińska, A., Kuźniar, A., Zielenkiewicz, U., Banach, A., Błaszczyk, M. (2018). Indicators of arable soil fatigue – bacterial families and genera: a metagenomic approach. Ecol. Indic., 93, 490–500. http://doi.org/10.1016/j.ecolind.2018.05.033

Downloads

Download data is not yet available.

Similar Articles

<< < 42 43 44 45 46 47 48 49 50 51 > >> 

You may also start an advanced similarity search for this article.