Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 3 (2019)

Articles

EFFICACY OF BIOCHEMICAL PREPARATIONS AND EXTRACT FROM Hypericum perforatum AGAINST BACTERIAL DISEASES

DOI: https://doi.org/10.24326/asphc.2019.3.14
Submitted: June 18, 2019
Published: 2019-06-18

Abstract

The biotechnical preparations: Biosept Active (based on a grapefruit extract) and BioZell (based on thyme oil) as well as Hypericum perforatum extract, streptomycin solution and fungicide Champion 50WP (active ingredient substance – e.i. 50% copper hydroxide) were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas ar- boricola pv. corylina. The screening was carried out in vitro on three media: Nutrient Agar (NA Difco), Pseudomonas Agar F (Merck) – analogue of King B and 523. In the experiments, the agar plate method was applied. There were no statistically significant differences in the effect of streptomycin and Champion 50WP on the growth inhibition of three bacteria strains for medium 523 and Nutrient Agar and of P. syringae pv. syringae and X. arboricola pv. corylina for medium King B. It was determined that the antibacterial activity of Biosept Active and BioZell biopreparations and H. perforatum extract against Agrobacterium tumefaciens (strain C58), Pseudomonas syringae pv. syringae (strain 760) and Xanthomonas arboricola pv. corylina (strain RIPF-x13) were dependent on the strain of pathogen as well as the growth medium used. According to the research results obtained, the Biosept Active preparation and H. perforatum extract demonstrated high bacteriostatic activity against three bacterial strains grown on the Nutrient Agar medium.

References

Abo-Elyousr, K.A.M. (2006). Induction of systemic acquired resistance against common blight of bean (Phaseolus vulgaris) caused by Xanthomonas campestris pv. phaseoli. Egypt. J. Phytopathol., 34, 41–50.

Adaskaveg, J.E., Hine, R.B. (1985). Copper tolerance and zinc sensitivity of Mexican strains of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Dis., 69, 993–996.

Angioni, A., Cabras, P., Hallewin, G., Pirisi, F.M., Schirra, M. (1998). Synthesis and inhibitory activity of 7-geranoxycoumarin against Penicillium species in Citrus fruit. Phytochemistry, 47, 1521–1525.

Bajpai, V.K., Kang, S., Xu, H., Lee, S.G., Baek, K.H., Kang, S.Ch. (2011). Potential roles of essential oils on controlling plant pathogenic bacteria Xanthomonas species: a review. Plant Pathol. J., 27(3), 207–224.

Caccioni, D.R.L., Guizzardi, M., Biondi, D.M., Renda, A., Ruberto, G. (1998). Relationship between volatile componetnt of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int. J. Food Microbiol., 43, 73–79.

Carvalho, F.P. (2006). Agriculture, pesticides, food security and food safety. Environ. Sci. Policy, 9(7–8), 685–692.

Chandler, D., Bailey, A.S., Mark Tatchell, G.M., Davidson, G., Greaves, J., Grant, W.P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. Lond. B Biol. Sci., 366(1573), 1987–1998.

Conlin, K., McCarter, S.M. (1983). Effectiveness of selected chemicals in inhibiting Pseudomonas syringae pv. tomato in vitro and in controlling bacterial speck. Plant Dis., 67(6), 639–644.

Cvetnic, Z., Vladimir-Knezevic, S. (2004). Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm., 54, 243–250.

Daferera, D.J., Ziogas, B.N., Polissiou, M.G. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot., 22, 39–44.

El-Zemity, S.R., Radwan, M.A., El-Mohamed, S.A., Sherby, S.M. (2008). Antibacterial screening of some essential oils, monoterpenoids and novel N-methyl carbamates based on monoterpenoids against Agrobacterium tumefaciens and Erwinia carotovora. Arch. Phytopathol. Plant Prot., 41(6), 451–461.

Feyzioglu, B., Demircili, M.E., Özdemir, M., Doğan, M., Baykan, M., Baysal, B. (2013). Antibacterial effect of hypericin. Afr. J. Microbiol. Res., 7(11), 979–982.

Gibbons, S. (2002). The genus Hypericum – a voluable resource of anti-Staphylococcal leads. Fitoterapia, 73(4), 300–304.

Han, B., Kang, J.-S., Kim, H.-J., Woo, Ch.-G. , Kim, Y.-J. (2015). Investigation of antimicrobial activity of grapefruit seed extract and its application to air filters with comparison to propolis and shiitake. Aerosol Air Qual. Res., 15, 1035–1044.

İşcan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M., Demi̇rci̇, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food, 50, 3943–3946.

Jamiołkowska, A., Hetman, B. (2016). Mechanizm działania preparatów biologicznych stosowanych w ochronie roślin przed patogenami. Annales UMCS, sec. E, Agricultura, 71(1), 13–29.

Jamiołkowska, A., Hetman, B., Skwaryło-Bednarz, B., Kopacki, M. (2017). Integrowana ochrona roślin w Polsce i Unii Europejskiej oraz prawne podstawy jej funkcjonowania. Praca przeglądowa. Annales UMCS, sec. E, Agricultura, 72(1), 103–111.

Jurgenliemk, G., Nahrstedt, A. (2002). Phenolic compounds from Hypericum perforatum. Planta Med., 68, 88–91.

Kado, C.I. (1979). Methods in plant bacteriology. University of California in Davis, 228.

Kokoskova, B., Pavela, R. (2007). Effectiveness of plant essential oils on the growth of Erwinia amylovora, the causal agent of fire blight disease. Pest Technol., 1, 76–80.

Kokoskova, B., Pouvova, D., Pavela, R. (2011). Effectivness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. J. Plant Pathol. 93, 133–139.

Lee, S.D., Cho, Y.S., 1996. Copper resistance and race distribution of Xanthomonas campestris pv. vesicatoria on pepper in Korea. Kor. J. Plant Pathol., 12, 150–155.

Lee, Y.H., Choi, Ch.W., Kim, S.H., Yun, J.G., Chang, S.W., Kim, Y.S., Hong, J.K. (2012). Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J., 28(1), 32–39.

Males, Z., Brantner, H.A., Sovic, K., Pilepic, K.H., Plazibat, M. (2006). Comparative phytochemical and antimicrobial investigation on Hypericum perforatum L. subsp. perforatum and H. perforatum subsp. angustifolium (DC) Gaudin. Acta Pharm., 56, 359–367.

Marko, G., Stall, R.E. (1983). Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Dis., 67, 779–781.

Medic-Saric, M., Brantner, A., Males, Z. (1996). Application of information theory and numerical taxonomy methods to thin-layer chromatographic investigations of Hypericum perforatum L. Acta Pharm., 46, 115–124.

Meral, G., Karaba, N.Ü. (2012). In vitro antibacterial activities of three Hypericum species from West Anatolia. Turkish Electron. J. Biotechnol. Special Issue, 6–10.

Mikiciński, A., Sobiczewski, P., Berczyński, S. (2012). Efficacy of fungicides and essentials oils against diseases of fruit trees. J. Plant Prot. Res. 4, 467–471.

Milosevic, T., Solujic, S., Sukdolak, S. (2007). In vitro study of ethanolic extract of Hypericum perforatum L. on growth and sporulation of some bacteria and fungi. Turkish J. Biol., 31, 237–241.

Okungbowa, F.I., Oviasogie, F.E. (2011). Antimicrobial effect of grapefruit crude extract on selected bacterial isolates. Int. J. Biomed. Pharm. Sci. 5(1), 68–70.

Panasiewicz, K., Koziara, W., Sulewska, H., Skrzypczak, W. (2007). Wpływ biologicznych i chemicznych zapraw nasiennych na parametry wigorowe ziarna zbóż. Prog. Plant Prot./ Post. Ochr. Rośl., 47(2), 235–239.

Paret, M.L., Cabos, R., Kratky, B.A., Alvarez, A.M. (2010). Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial of edible ginger. Plant Dis., 94, 521–527.

Piekutowska, M. (2017). Potencjał naturalnych preparatów pochodzenia roślinnego dla poprawy zdrowotności i żywotności materiału siewnego roślin rolniczych. Probl. Drob. Gospod. Rol. – Probl. Small Agric. Hold., 3, 43–59.

Richie, D.F., Dittapongpitch, V. (1991). Copper and streptomycin-resistant strains and host differentia races of Xanthomonas campestris pv. vesicatoria in North Carolina. Plant Dis., 75, 733–736.

Saniewska, A. (2002). Aktywność antygrzybowa endogennych flawonoidów grejpfruta (Citrus paradisi). Sympozium Naukowe pt. „Fitopatologia polska w Europie”, Warszawa, 16–17.09.2002, 62.

Shalibeik, S., Arjomandzadegan, M., Dakhili, M. (2016). Antimicrobial activity of aqueous extract of Hypericum perforatum against clinical isolates of Escherichia coli (ESBLs.). Int. J. Adv. Biotechnol. Res. (IJBR)., 7, Special Issue 4, 919–927.

Turek, S. (2005). Ziele dziurawca zwyczajnego – składniki czynne i potencjalne zastosowania lecznicze. Post. Fitoter., 3–4, 80–86.

Vasinauskiene, M., Raduiene, J., Zitikaite, I., Surviliene, E. (2006). Antibacterial activities of essential oils from aromatic and medical plants against growth of phytopathogenic bacteria. Agron. Res., 4 (Special issue), 437–440.

Woedtke, T., Schluter, B., Pflegel, P., Lindequist, U., Julich, W.D. (1999). Aspects of the antimicrobial efficacy of grapefruit seed extract and its selection to preservative substances contained. Pharmazie, 54, 452–456.

Wolny, D., Nowakowska-Wolna, A., Chodurek, E., Dzierżewicz, Z. (2009). Interakcja dziurawca zwyczajnego (Hypeastrum perforatum ). Farm. Przegl. Nauk., 2, 19–23.

Yanmis, D., Gormez, A., Bozari, S., Orhan, F., Gulluce, M., Agar, G., Sahin, F. (2012). Microbes in Applied Research: Current Advances and Challenges, A. Mendez-Vilas (red.). Word Scientific Publishing, Formatex Research Center, Malaga, Spain, 531–535.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 79 80 81 82 83 84 

You may also start an advanced similarity search for this article.