Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 22 Nr 6 (2023)

Artykuły

Influence of medium type and culture method on the multiplication efficiency of Chlorophytum comosum (Thunb.) Jacques in in vitro conditions

DOI: https://doi.org/10.24326/asphc.2023.5250
Przesłane: 3 sierpnia 2023
Opublikowane: 2023-12-22

Abstrakt

In response to the challenges posed by modern plant micropropagation techniques, a promising technology for growing shoots temporary immersed in nutrient solution (temporary immersion system, TIS) using SETIS™ bioreactors has been developed. In this experiment, the suitability of this technology for the propagation of Chlorophytum comosum (Thunb.) Jacques was assessed. In vitro culture was carried out using a conventional technique on solid media and liquid media using the SETIS™ bioreactor. In addition, two culture media differing in macro- and micronutrient content (Murashige & Skoog and Rugini OM), while having the same set of phytohormones were evaluated in both systems. Explants obtained from the flower stalk of the plants were used to establish the culture. The effectiveness of the cultures after the first and second subculture was assessed. The study has demonstrated that the efficiency of liquid culture carried out using the SETIS™ bioreactor is higher compared to the conventional culture. The highest multiplication coefficient, fresh weight of regenerants and RGR index value in bioreactor cultures was recorded on Rugini OM medium. No statistically significant differences were found between MS medium and Rugini OM medium in terms of shoot length and vigour with this method of culture. When using the conventional method, better results can be achieved with MS medium. This research can be considered as a first step towards the production of Chlorophytum comosum (Thunb.) Jacques on a larger scale.

Bibliografia

  1. Aka Kaçar, Y., Biçen, B., Şimşek, Ö., Dönmez, D., Erol, M. (2020). Evaluation and comparison of a new type of temporary immersion system (TIS) bioreactors for myrtle (Myrtus communis L.). Appl. Ecol. Environ. Res., 18(1), https://doi.org/10.15666/aeer/1801_16111620 DOI: https://doi.org/10.15666/aeer/1801_16111620
  2. Alisha, B., Shoaib, A., Harikumar, S. (2014). Chlorophytum comosum (Thunberg) Jacques: a review. Int. Res. J. Pharm., 5(7), 546–549. https://doi.org/10.7897/2230-8407.0507110 DOI: https://doi.org/10.7897/2230-8407.0507110
  3. Alister, B.M., Finnie, J., Watt, M., Blakeway, F. (2005). Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). In: Hvoslef-Eide, A.K., Preil, W. (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_33 DOI: https://doi.org/10.1007/1-4020-3200-5_33
  4. Benelli, C., De Carlo, A. (2018). In vitro multiplication and growth improvement of Olea europaea L. cv. Canino with temporary immersion system (Plantform™). 3 Biotech., 8(7), 317. https://doi.org/10.1007/s13205-018-1346-4 DOI: https://doi.org/10.1007/s13205-018-1346-4
  5. Bjorå, C.S., Hemp, A., Hoell, G., Nordal, I. (2008). A taxonomic and ecological analysis of two forest Chlorophytum taxa (Anthericaceae) on Mount Kilimanjaro, Tanzania. Plant Syst Evol., 274, 243–253. https://doi.org/10.1007/s00606-008-0032-0 DOI: https://doi.org/10.1007/s00606-008-0032-0
  6. Bouzroud, S., El Maaiden, E., Sobeh, M., Devkota, K.P., Boukcim, H., Kouisni, L., El Kharrassi, Y. (2022). Micropropagation of Opuntia and other cacti species through axillary shoot proliferation: a comprehensive review. Front. Plant Sci., 13, 926653. https://doi.org/10.3389/fpls.2022.926653 DOI: https://doi.org/10.3389/fpls.2022.926653
  7. Deore, S., Jajoo, N.B., Chittam, K.P., Deshmukh. T. (2015). Comparative pharmacognostic, phytochemical and biological evaluation between five Chlorophytum species. Pharmacogn. J., 7(5), 147–156. https://doi.org/10.5530/pj.2015.5.12 DOI: https://doi.org/10.5530/pj.2015.5.12
  8. Eibl, R., Eibl, D. (2008). Design of bioreactors suitable for plant cell and tissue cultures. Phytochem. Rev., 7, 593–598. https://doi.org/10.1007/s11101-007-9083-z DOI: https://doi.org/10.1007/s11101-007-9083-z
  9. Gatti, E., Sgarbi, E., Ozudogru, E.A., Lambardi, M. (2017). The effect of PlantformTM bioreactor on micropropagation of Quercus robur in comparison to a conventional in vitro culture system on gelled medium, and assessment of the microenvironment influence on leaf structure. Plant Biosyst., 151, 1129–1136. DOI: https://doi.org/10.1080/11263504.2017.1340356
  10. Gianguzzi, V., Inglese, P., Barone, E., Sottile, F. (2019). In vitro regeneration of Capparis spinosa L. by using a temporary immersion system. Plants, 8(6), 177. https://doi.org/10.3390/plants8060177 DOI: https://doi.org/10.3390/plants8060177
  11. Georgiev, V., Schumann, A., Pavlov, A., Bley, T. (2014). Temporary immersion systems in plant biotechnology. Biotechnol. Eng. Life Sci., 14(6), 607–621. https://doi.org/10.1002/elsc.201300166 DOI: https://doi.org/10.1002/elsc.201300166
  12. Hubai, K., Kováts, N., Eck-Varanka, B., Teke, G. (2023). Pot study using Chlorophytum comosum plants to biomonitor PAH levels in domestic kitchens. Environ. Sci. Pollut. Res. Int., 30(18), 51932–51941. https://doi: 10.1007/s11356-023-25469-9 DOI: https://doi.org/10.1007/s11356-023-25469-9
  13. Jo, U.A., Murthy, H.N., Hahn, E.J., Paek, K.Y. (2008). Micropropagation of Alocasia amazonica using semisolid and liquid cultures. In Vitro Cell. Dev. Biol., 44, 26–32. https://doi.org/10.1007/s11627-007-9081-2 DOI: https://doi.org/10.1007/s11627-007-9081-2
  14. Kaçar, Y.A., Dönmez, D., Biçen, B., Erol, M.H., Şimsek, Ö., Mendi, Y.Y. (2020). Micropropagation of Spathiphyllum with temporary immersion bioreactor system. TURJAF, 8(5), 1195-1200. https://doi.org/10.24925/turjaf.v8i5.1195-1200.3364 DOI: https://doi.org/10.24925/turjaf.v8i5.1195-1200.3364
  15. Kaushal, N., Alok, A., Kajal, M., Singh, K. (2021). Regeneration and genetic fidelity analysis of Chlorophytum borivilianum using flower stalk as explant source. Adv. Biol. Biotechnol., 12(04), 95–107. https://doi.org/10.4236/abb.2021.124007 DOI: https://doi.org/10.4236/abb.2021.124007
  16. Maghiar, R. (2005). Vitroculture initiation of Chlorophytum comosum from stolon explants, on basic MS media with β-indolilbutiric acid (IBA) and kinetin (K). Analele Univ. Oradea, Fasc. Biologie, 12, 171–180.
  17. Mamun, N.H., Egertsdotter, U., Aidun, C.K. (2015). Bioreactor technology for clonal propagation of plants and metabolite production. Front. Biol., 10, 177–193. https://doi.org/10.1007/s11515-015-1355-1 DOI: https://doi.org/10.1007/s11515-015-1355-1
  18. Ramírez-Mosqueda, M.A., Bello-Bello, J.J. (2021). SETIS™ bioreactor increases in vitro multiplication and shoot length in vanilla (Vanilla planifolia Jacks. ex Andrews). Acta Physiol. Plant., 43, 52. https://doi.org/10.1007/s11738-021-03227-z DOI: https://doi.org/10.1007/s11738-021-03227-z
  19. Martínez-Estrada, E., Islas-Luna, B., Pérez-Sato, J.A., Bello-Bello, J.J. (2019). Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Sci. Hortic., 249, 185–191. https://doi.org/10.1016/j.scienta.2019.01.053 DOI: https://doi.org/10.1016/j.scienta.2019.01.053
  20. Mirzabe, A.H., Hajiahmad, A., Fadavi, A., Rafiee, S. (2022). Temporary immersion systems (TISs): a comprehensive review. J Biotechnol., 20., 357, 56–83. https://doi: 10.1016/j.jbiotec.2022.08.003 DOI: https://doi.org/10.1016/j.jbiotec.2022.08.003
  21. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 495–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  22. Nath, J., Devi, K., Kumar, V., Sharma, P., Sharma, R.K., Joshi, R. (2023). In vitro flower induction and cyto-genetic fidelity assessment of Chlorophytum comosum (Thunb.) Jacques var. comosum. S. Afr. J. Bot. 159, 678–685. https://doi.org/10.1016/j.sajb.2023.06.005 DOI: https://doi.org/10.1016/j.sajb.2023.06.005
  23. Regueira, M., Rial, E., Blanco, B., Bogo, B., Aldrey, A., Correa, B., Vidal, N. (2018). Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees, 32, 61–71. https://doi.org/10.1007/s00468-017-1611-x DOI: https://doi.org/10.1007/s00468-017-1611-x
  24. Rosales, C., Brenes, J., Salas, K., Arce-Solano, S., Abdelnour-Esquivel, A. (2018). Micropropagation of Stevia rebaudiana in temporary immersion systems as an alternative horticultural production method. Rev. Chapingo Ser. Hortic., 24(1), 69–84. https://doi.org/10.5154/r.rchsh.2017.08.028 DOI: https://doi.org/10.5154/r.rchsh.2017.08.028
  25. Rugini, E. (1984). In vitro propagation of some olive cultivars with different root ability, and medium development using analytical data from shoot and embryos. Sci. Hort., 24, 123–134. DOI: https://doi.org/10.1016/0304-4238(84)90143-2
  26. Sabrina, S.L. (2022). Aktivitas antibakteri ekstrak etanol daun lili paris (Chlorophytum comosum) terhadap bakteri Staphylococcus epidermidis. Doctoral dissertation. Akademi Farmasi Putra Indonesia Malang.
  27. Samantaray, S., Kumar, S.V., Maiti, S. (2009). Direct shoot regeneration from immature inflorescence cultures of Chlorophytum arundinaceum and Chlorophytum borivilianum. Biologia, 64(2), 305–309. https://doi.org/10.2478/s11756-009-0039-1 DOI: https://doi.org/10.2478/s11756-009-0039-1
  28. Silva, T.D., Chagas, K., Batista, D.S., Felipe, S.H.S., Louback, E., Machado, L.T., Otoni, W. C. (2019). Morphophysiological in vitro performance of Brazilian ginseng (Pfaffia glomerata (Spreng.) Pedersen) based on culture medium formulations. In Vitro Cell. Dev. Biol., 55, 454–467. https://doi.org/10.1007/s11627-019-10003-9 DOI: https://doi.org/10.1007/s11627-019-10003-9
  29. Şimşek, Ö., Biçen, B., Dönmez, D., Kaçar, Y.A. (2017). Effects of different media on micropropagation and rooting of Myrtle (Myrtus communis L.) in in vitro conditions. Int. J. Environ. Agric. Res., 3(10), 54–59. https://doi.org/10.25125/agriculture-journal-IJOEAR-OCT-2017-22 DOI: https://doi.org/10.25125/agriculture-journal-IJOEAR-OCT-2017-22
  30. Steingroewer, J., Bley, T., Georgiev, V., Ivanov, I., Lenk, F., Marchev, A., Pavlov, A. (2013). Bioprocessing of differentiated plant in vitro systems. Eng. Life Sci., 13, 26–38. https://doi.org/10.1002/elsc.201100226 DOI: https://doi.org/10.1002/elsc.201100226
  31. Vendrame, W.A., Xu, J., Beleski, D.G. (2023). Micropropagation of Brassavola nodosa (L.) Lindl. using SETIS™ bioreactor. Plant Cell Tiss Organ Cult., 153, 67–76. https://doi.org/10.1007/s11240-022-02441-y DOI: https://doi.org/10.1007/s11240-022-02441-y
  32. Yancheva, S., Georgieva, L., Badjakov, I., Dincheva, I., Georgieva, M., Georgiev, V., Kondakova, V. (2019). Application of bioreactor technology in plant propagation and secondary metabolite production. J. Cent. Eur. Agric., 20, 321–340. https://doi.org/10.5513/JCEA01/20.1.2224 DOI: https://doi.org/10.5513/JCEA01/20.1.2224
  33. Zhang, B., Song, L., Bekele, L.D., Shi, J., Jia, Q., Zhang, B., Chen, J. (2018). Optimizing factors affecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Sci. Hortic., 232, 121–126. https://doi.org/10.1016/j.scienta.2018.01.007 DOI: https://doi.org/10.1016/j.scienta.2018.01.007

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.