EFFECT OF MYCORRHIZAL COLONIZATION AND NUTRIENT SOLUTIONS CONCENTRATION ON THE YIELDING AND CHEMICAL COMPOSITION OF TOMATO GROWN IN ROCKWOOL AND STRAW MEDIUM

Zenia Michałojć

University of Life Sciences in Lublin

Zbigniew Jarosz

University of Life Sciences in Lublin

Karolina Pitura

University of Life Sciences in Lublin

Katarzyna Dzida

University of Life Sciences in Lublin



Abstract

Efficiency of arbuscular mycorrhizal fungi (AMF) to host plants depends mainly on the chemical composition and properties of the rhizosphere. This is especially important in soilless cultures, in which the amount of nutrients supplied to the rhizosphere has to be strictly controlled. The effect of AMF and two nutrient solution concentrations: standard (S) with average EC 2.6 mS·cm-1 and reduced (R) with average EC 1.9 mS·cm-1, on the yielding and chemical composition of fruit and leaves of tomato, was investigated. Tomato plants cultivar ‘Admiro F1’ were cultivated in greenhouse with fertigation system in rockwool and straw medium in 2012–2013 years. In the research, no effect of AMF on the total and marketable yield as well as on number of fruit per plant, was detected. A significant lower marketable yield in treatments fertigated with standard nutrient solution (S), compared to reduced solution (R) was detected, which was the effect of smaller number
of fruits. Fruits of tomato inoculated with AMF contained significantly more sugars as compared to plants growing without mycorrhization. Significant higher dry matter content was detected in fruit of tomato fertigated with standard nutrient solution (S), compared to reduced solution (R). More total nitrogen was recorded in leaves of plants mycorrhized with AMF, although this increase was not statistically confirmed in every treatments. More calcium was determined in fruits of tomato inoculated with AMF as compared to those harvested from non-mycorrhized plants.

Keywords:

soilless culture, dry matter, nitrogen, potassium, total sugars, ascorbic acid

Abdel Latef, A.A.H., Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hort., 127, 228–233.
Brañas, J., Ibañez, M.A., Lorenzo, P., Gallardo, M., Romojaro, F. (2001). Nutritional aspects affecting tomato quality soilless culture. Acta Hort., 559, 509–514.
Büchse, A., Krajewski, P., Kristensen, K., Pilarczyk, W. (2007). Trial setup and statistical analysis. Susvar Handbook, 11–12.
Candido, V., Campanelli, G., D’Addabbo, T., Castronuovo, D., Renco, M., Camele, I. (2013). Growth and yield promoting effect of artificial mycorrhization combined with different fertiliser rates on field-grown tomato. Ital. J. Agron., 8, 168–174.
Chohura, P., Komosa, A. (2003). Nutrition status of greenhouse tomato grown in inert media. Part I. Macroelements. Acta Sci, Pol. Hortorum Cultus, 2, 3–13.
Colella, T., Candido, V., Campanelli, G., Camele, I., Battaglia, D. (2014). Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica, 42, 235–246.
Commission Regulation (EC) No. 790/2000 (2000). http://faolex.fao.org/docs/pdf/eur 36584.pdf
Copetta, A., Bardi, L., Bertolone, E., Berta, G. (2011). Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst., 145, 106–115.
Dasgan, H.Y., Kusvuran, S., Ortas, I. (2008). Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in recycling and open systems. Afr. J. Biotechnol., 7, 3606–3613.
Demir, S. (2004). Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk. J. Biol., 28, 85–90.
Fandi, M., Muhtaseb, J., Hussein, M. (2010). Effect of N,P,K concentration on yield and fruit quality of tomato (Licopersicon esculentum L) in tuff culture. J. Cent. Europ. Agric., 11, 179–184.
Hajiboland, R., Aliasgharzadeh, N., Laiegh, S.F., Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil, 331, 313–327.
Hodge, A., Storer, K. (2014). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil, Springer Internat. Publish., 1–19.
Kleiber, T., Markiewicz, B., Niewiadomska, A. (2012). Organic substrates for intensive horticultural cultures: yield, and nutrient status of plants, microbiological parameters of substrates. Pol. J. Environ. Stud., 21, 1261–1271.
Kowalczyk, K., Gajc-Wolska, J. (2011). Effect of the kind of growing medium and transplant grafting on the cherry tomato yielding. Acta Sci. Pol. Hortorum Cultus, 10, 61–70.
Kowalska, I., Sady, W. (2012). Effect of nitrogen form, type of polyethylene film covering the tunnel and stage of fruit development on calcium content in sweet pepper fruits. Acta Sci. Pol. Hortorum Cultus, 11, 91–100.
Magán, J.J., Gallardo, M., Thompson, R.B., Lorenzo, P. (2008). Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agricult. Wat. Management, 95, 1041–1055.
Michałojć, Z., Horodko, K. (2006). Wpływ dokarmiania pozakorzeniowego wapniem na plonowanie i skład chemiczny papryki słodkiej. Acta Agroph., 7, 671–679.
Mwangi, M.W., Monda, E.O., Okoth, S.A., Jefwa, J.M. (2011). Inoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhizal fungi and their effect on growth and control of wilt in tomato seedlings. Brazilian J. Microbiol., 42, 508–513.
Nurzyński, J. (2013). Effect of substrates on nutrient content in root zone and leaves of greenhouse tomato. Acta Sci. Pol. Hortorum Cultus, 12, 169–178.
Nurzyński, J., Jarosz, Z. (2012). The nutrient content in substrates and leaves of greenhouse tomato. Acta Sci. Pol. Hortorum Cultus, 11, 35–45.
Nurzyński, J., Jarosz, Z., Michałojć, Z. (2012). Yielding and chemical composition of greenhouse tomato fruit grown on straw or rockwool substrates. Acta Sci. Pol. Hortorum Cultus, 11, 79–89.
Nzanza, B., Marais, D., Soundy, P. (2012). Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int. J. Agric. Biol., 14, 965–969.
Ostrowska, A., Gawliński, S., Szczubiałka, Z. (1991). Metody analizy i oceny gleb i roślin. Instytut Ochrony Środowiska, Warsaw, Poland.
Piróg, J., Bykowski, G., Krzesiński, W. (2010). Effect of substrate type and method of fertigation control on yield size and fruit quality of greenhouse cucumber. Acta Sci. Pol. Hortorum Cultus, 9, 99–109.
PN-A-04019 (1998). Oznaczanie zawartości witaminy C. Analitycal Norm Handbook, Warsaw, Poland.
PN-90/A-75101/03 (1990). Oznaczanie zawartości suchej masy metodą wagową. Analitycal Norm Handbook, Warsaw, Poland.
Rosadi, R.A.B., Senge, M., Suhandy, D., Tusi, A. (2014). The effect of EC levels of nutrient solution on the growth, yield, and quality of tomatoes (Solanum Lycopersicum) under the hydroponic system. J. Agric. Engin. Biotech., 2, 7–12.
Rutkowska, U. (1981). Wybrane metody badań składu i wartości odżywczej żywności. PZWL, Warsaw, Poland.
Salvioli, A., Zouari, I., Chalot, M., Bonfante, P. (2012). The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol., 12, 1–12.
Sonneveld, C., Voogt, W. (2009). Plant nutrition of greenhouse crops. Springer Dordrecht Heidelberg, London, New York.
Tüfenkçi, Ş., Demir, S., Şensoy, S., Ünsal, H., Demirer, E., Erdinç, Ç., Biçer, Ş., Ekincialp, A. (2012). The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turk. J. Agric. For., 36, 317–327.
Tüzel, I.H., Tüzel, Y., Gül, A., Eltez, R.Z. (2001). Effects of EC level of the nutrient solution on yield and fruit quality of tomatoes. Acta Hort., 559, 587–592.
Utkhede, R. (2006). Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi Fusarium oxysporum f. sp. radiceslycopersici. BioContr., 51, 393–400.
Download

Published
2015-12-31



Zenia Michałojć 
University of Life Sciences in Lublin
Zbigniew Jarosz 
University of Life Sciences in Lublin
Karolina Pitura 
University of Life Sciences in Lublin
Katarzyna Dzida 
University of Life Sciences in Lublin



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

<< < 1 2 3 4 > >>