Identification of the mathematical models of viscoelastic biological materials using Prony method

Anna Stankiewicz

Akademia Rolnicza w Lublinie


Abstract

An algorithm, based on Prony approach, for identification of the relaxation modulus of linear viscoelastic materials described by Maxwell model is presented. It is proved, that if the real relaxation modulus is four-element Maxwell and the measurements are not corrupted by noise, then the identifiability of the real parameters of the relaxation modulus is guaranteed. It is also proved that all the computational tasks solved in the identification scheme are well-posed in the Hadamard sense. Next the necessary and sufficient conditions for the applicability of the algorithm to identifying the four-parameter Maxwell models are derived. The effectiveness of the method is demonstrated through the computation of the relaxation function of the beet sugar root samples in the state of the uniaxial strain. The second example using Lanczos data is also enclosed.

Keywords:

viscoelasticity, stress relaxation function, Maxwell model, identification algorithm

Aczél J., 1966. Lectures on functional equations and their applications. Academic Press New York.

Barrodale, I., Oleski, D.D., 1981. Exponential approximation using Prony's method. In: Baker, C.T.H., Phillips, C., The Numerical Solution of Nonlinear Problems, 258–269. DOI: https://doi.org/10.1007/BFb0090685

Brooks J.W., Maier M.W., 1996. Application of system identification and neural networks to classification of land mines. EUREL Int. Conf. The Detection of Abandoned Land Mines: A Humanitarian Imperative Seeking a Technical Solution. Conf. Publ. 431, 46–50. DOI: https://doi.org/10.1049/cp:19961077

Bubnicki Z., 1980. Identification of Control Plants. PWN Warszawa, Elsevier Amsterdam.

Bzowska-Bakalarz M. 1994. Właściwości mechaniczne korzeni buraków cukrowych. Rozpr. Nauk. AR w Lublinie, 166.

Chen P., Chen S., 1986. Stress relaxation functions of apple under high loading rates. Transaction of the ASAE. 29, 1754–1759. DOI: https://doi.org/10.13031/2013.30384

Derski W., Ziemba S., 1968. Analiza modeli reologicznych. PWN Warszawa.

Evans J. W., Gragg W.B., LeVeque R. J., 1980. On Least-Squares Exponential Sum Approximation with Positive Coefficients. Mathematics of Computations 34(149), 203–211. DOI: https://doi.org/10.1090/S0025-5718-1980-0551298-6

Fargues M.P., Cristi R., Vanderkamp M.M., 1993. Modeling and classification of biological signals using least squares Prony-SVD AR modeling. Proc. of the 36th Midwest Symp. on Circuits and Systems. 16-18 Aug. 1993. 1, 445–448.

Farrokhi M., Isik C., 1994. Application of Prony signal analysis to recurrent neural networks. Proc. IEEE World Congress on Computational Intelligence and IEEE Int. Conf. on Neural Networks. 27 June – 2 July 1994, 1, 413–418. DOI: https://doi.org/10.1109/ICNN.1994.374198

Flügge W., 1967. Viscoelasticity. Blaisdell Publishing Company Waltham, Toronto, London.

Gołacki K., 1998. Charakterystyki lepkosprężyste korzeni marchwi w szerokim zakresie prędkości obciążeń mechanicznych. Rozpr. Nauk. AR w Lublinie. 216.

Gołacki K., 2002. Lepkosprężyste charakterystyki korzeni buraków cukrowych. Acta Agroph. 78, 37–49.

Gutenbaum J., 2003. Modelowanie matematyczne systemów. EXIT Warszawa.

Hasanovic A., Feliachi A., Bhatt N.B., DeGroff A.G., 2004. Practical robust PSS design through identification of low-order transfer functions. IEEE Trans. on Power Systems 19(3), 1492–1500. DOI: https://doi.org/10.1109/TPWRS.2004.831679

Hildebrand F. B., 1956. Introduction to Numerical Analysis. McGraw-Hill New York.

Kammler D. W., 1979. Least squares approximation of completely monotonic functions by sums of exponentials. SIAM J. Numer. Anal. 16(5), 801–818. DOI: https://doi.org/10.1137/0716060

Kiełbasiński A., Schwetlick H., 1994. Numeryczna algebra liniowa. Wprowadzenie do obliczeń zautomatyzowanych. WNT, Warszawa.

Kundu D., Mitra A., 1998. Estimating the parameters of the linear compartment model. J. Statist. Planning Infer. 70, 317–334. DOI: https://doi.org/10.1016/S0378-3758(97)00190-0

Lanczos C., 1956. Applied Analysis. Prentice Hall Englewood Clifs.

Leśmanowicz L., Łoś J., 1972. Zbiór zadań z algebry. PWN, Warszawa.

Lu J., Nehrir M.H., Pierre D.A., 2001. A fuzzy logic-based self tuning power system stabilizer optimized with a genetic algorithm. Electr. Power Syst. Res. 60, 77–83. DOI: https://doi.org/10.1016/S0378-7796(01)00170-5

Osborne, M. R., 1975. Some special nonlinear least squares problems. SIAM J. Num. Anal. 12, 571–592. DOI: https://doi.org/10.1137/0712044

Osborne, M. R., Smyth, G. K., 1995. A modified Prony algorithm for fitting sums of exponential functions. SIAM J. Sci. Comput. 16, 119–138. DOI: https://doi.org/10.1137/0916008

Ouibrahim H., 1989. Prony, Pisarenko, and the matrix pencil: a unified presentation. IEEE Transact. Acoust., Speech and Signal Proc. 37(1), 133–134. DOI: https://doi.org/10.1109/29.17513

Petersson J., Holmström K., 1998. Initial values for two-classes of exponential sum least squares fitting problems. Research Report IMa-TOM-1998-07. Mälardalen University, Sweden.

Pierre D.A., Trudnowski D.J., Hauer J.F., 1992. Identifying linear reduced-order models for systems with arbitrary initial conditions using Prony signal analysis. IEEE Trans. on Automatic Control 37 (6), 831–835. DOI: https://doi.org/10.1109/9.256344

Prony G. R., 1795. Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures. Journal de l'École Polytechnique 1(22), 24–76.

Rao M. A., 1999. Rheology of Fluid and Semisolid Foods. Principles and Applications. Aspen Publishers, Inc. Gaithersburg, Maryland.

Ribeiro M. P., Ewins D. J., Robb D. A., 2003. Non-Stationary Analysis and Noise Filtering Using a Technique Extended from the Original Prony Method. Mech. Syst. Signal Proc. 17(3), 533–549. DOI: https://doi.org/10.1006/mssp.2001.1399

Ruhe A., 1980. Fitting empirical data by positive sums of exponentials. SIAM J. Sci. Stat. Comput. 1(4), 481–498. DOI: https://doi.org/10.1137/0901035

Stankiewicz A., Gołacki K., 2004. Algorytm identyfikacji zmiennych w czasie modułów odkształcenia postaciowego i objętościowego roślinnych materiałów lepkosprężystych. Acta Sci. Pol., Technica Agraria 3(1–2), 79–95. DOI: https://doi.org/10.24326/aspta.2004.1-2.8

Street A.M., Lukama L., Edwards D.J.,2000. Radio imaging using SVD Prony. Electr. Letters 36 (13), 1150–1152. DOI: https://doi.org/10.1049/el:20000803

Szi-Wen C., 2000. A two-stage discrimination of cardiac arrhythmias using a total least squares-based Prony modeling algorithm. IEEE Tran. on Biomedical Engin. 47(10), 1317–1327. DOI: https://doi.org/10.1109/10.871404

Tawfik M.M., Morcos M.M., 2001. Prony application for locating faults on loop systems. IEEE Power Engineering Review. 21(8), 41–43. DOI: https://doi.org/10.1109/39.948256

Trudnowski D.J., Johnson J.M., Hauer J.F., 1998. SIMO system identification from measured ringdowns. Proc. of the American Control Conference. Philadelphia, 5, 2968–2972. DOI: https://doi.org/10.1109/ACC.1998.688402

Varah J. M., 1985. On fitting exponentials by nonlinear least squares. SIAM J. Sci. Stat. Comput. 6 (1), 30–44. DOI: https://doi.org/10.1137/0906003

Younan N.H., 2000. Radar target identification via a combined E-pulse/SVD-Prony method. The Record of the IEEE 2000 International Radar Conference, 7–12 May 2000, 799–803.


Published
2005-06-30



Anna Stankiewicz 
Akademia Rolnicza w Lublinie



License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles are made available under the CC BY-NC-ND 4.0  (recognition by authorship, non-commercial use, no dependent works).
The author signs a statement on the originality of the work and the contribution of individuals.

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.


Most read articles by the same author(s)