A scheme for identification of continuous relaxation time spectrum of biological viscoelastic materials

Anna Stankiewicz

Katedra Podstaw Techniki, Akademia Rolnicza w Lublinie, ul. Doświadczalna 50A, 20-280 Lublin


Abstract

The purpose of the paper is to investigate an algorithm for recovery of the continuous relaxation time spectrum of viscoelastic materials from time-measurements of linear relaxation modulus. A new identification scheme based on the least-squares approximation of relaxation modulus by finite serious of modified Bessel functions is proposed. The analysis of the scheme properties, in particular the convergence and model error analysis, as well as the numerical studies conducted indicates that the scheme proposed is an accuracy and easy implementable tool for recovery of the relaxation time spectra. The identification algorithm can be successfully applied to study the mechanical properties of highly hydrated plant materials subjected to various kinds of loading as well as different water solutions used in the food industry.

Keywords:

viscoelasticity, relaxation time spectrum, identification, Bessel modified functions

Brabec Ch. J., Rögl H., Schausberger A., 1997. Investigation of relaxation properties of polymer melts by comparison of relaxation time spectra calculated with different algorithms. Rheol. Acta 36, 667–676. DOI: https://doi.org/10.1007/BF00367363

Baumgaertel M., Winter H. H., 1989. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol. Acta 28, 511–519. DOI: https://doi.org/10.1007/BF01332922

Chen P., Chen S., 1986. Stress relaxation functions of apple under high loading rates. Transaction of the ASAE 29, 1754–1759. DOI: https://doi.org/10.13031/2013.30384

Chen P., 1994. Creep response of generalised Maxwell model. Int. Agrophysics 8, 555–558.

Christensen R. M., 1971. Theory of Viscoelasticity. An Introduction. Academic Press New York.

De Baerdemeaker J. G., Segerlind L. J., 1976. Determination of the viscoelastic properties of the apple flesh. Transaction of the ASAE 19, 346–353. DOI: https://doi.org/10.13031/2013.36025

Derski W., Ziemba S., 1968. Analiza modeli reologicznych. PWN Warszawa.

Elster C., Honerkamp J., Weese J., 1991. Using regularization methods for the determination of relaxation and retardation spectra of polymeric liquids. Rheol. Acta 30, 161–174. DOI: https://doi.org/10.1007/BF00373238

Fujihara S., Yamamoto R., Masuda Y. 1995. Maxwellian Spectra of Stress Relaxation in the Cell Wall and Growth Regulation in Higher Plants. Proc. of Int. Workshop Stress Relaxation in Solids and Biological Origin, Prague 1995, 47–51.

George S., Nair M. T., 1994. Parameter choice by discrepancy principles for ill-posed problems leading to optimal convergence rates. J. Optim. Theory Appl. 183, 217–222. DOI: https://doi.org/10.1007/BF02191771

Gołacki K., 1998. Charakterystyki lepkosprężyste korzeni marchwi w szerokim zakresie prędkości obciążeń mechanicznych. Rozprawy Naukowe Akademii Rolniczej w Lublinie, 216.

Gołacki K., Stankiewicz A., 2002. Algorytm obliczeniowy wyznaczania współczynnika Poissona lepkosprężystego materiału roślinnego. Acta Agrophysica 78, 51–61.

Groetsch C. W., 1993. Inverse Problems in the Mathematical Sciences, Vieweg Publishing Wiesbaden. DOI: https://doi.org/10.1007/978-3-322-99202-4

Hasiewicz Z., Stankiewicz A., 1985. On Input-Independent System Identification by Monte-Carlo Approach. IEEE Transaction on Automatic Control 30 (5), 480–483. DOI: https://doi.org/10.1109/TAC.1985.1103975

Hellebrand H. J., 1995. Comparison of Models for Evaluation of Stress Relaxation. Proc. of Int. Workshop Stress Relaxation in Solids and Biological Origin, Prague 1995, 3–10.

Kaczorek T., 1998. Wektory i macierze w automatyce i elektrotechnice. WNT Warszawa.

Malkin A. Ya., Masalova I., 2001. From dynamic modulus via different relaxation spectra to relaxation and creep functions. Rheol. Acta 40, 261–271. DOI: https://doi.org/10.1007/s003970000128

Morozov V. A.1966. On the solution of functional equations by the method of regularization. Soviet Mathematics Dokłady 7, 414–417.

Orbey N., Dealy J. M., 1991. Determination of the relaxation spectrum from oscillatory shear data. J. Rheol. 35(6), 1035–1049. DOI: https://doi.org/10.1122/1.550164

Owens R. G., Phillips T. N., 2002. Computational Rheology. Imperial College Press London. DOI: https://doi.org/10.1142/p160

Paulson K. S., Jouravleva S., McLeod C. N. 2000. Dielectric Relaxation Time Spectroscopy. IEEE Trans. on Biomedical Engineering 47, 1510–1517. DOI: https://doi.org/10.1109/10.880103

Phan-Thien N., Safari-Ardi M., 1998. Linear viscoelastic properties of flour-water doughs at different water concentrations. J. Non-Newtonian Fluid Mech. 74, 137–150. DOI: https://doi.org/10.1016/S0377-0257(97)00071-2

Stankiewicz A., 1995. A decentralized three-level scheme for global identification of complex steady-state systems. Proc. Second International Symposium on Methods and Models in Automation and Robotics. Międzyzdroje 1995, 299–304.

Syed Mustapha S. M. F. D., Phillips T. N., 2000. A dynamic nonlinear regression method for the determination of the discrete relaxation spectrum. J. Phys. D: Appl. Phys. 33, 1219–1229. DOI: https://doi.org/10.1088/0022-3727/33/10/313

Ter Haar D., 1950. A Phenomenological Theory of Visco-Elastic Behaviour. I. Physica XVI, 719–737. DOI: https://doi.org/10.1016/0031-8914(50)90039-5

Tichonow A. N., Samarski A. A., 1963. Równania fizyki matematycznej. PWN Warszawa.

Tikhonov A. N., 1963. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady 4, 1035–1038.

Winter H. H., 1997. Analysis of dynamical mechanical data: inversion into a relaxation time spectrum and consistency check. J. Non-Newtonian Mech. 68, 225–239. DOI: https://doi.org/10.1016/S0377-0257(96)01512-1

Węgrzyn S., 1958. Przebiegi nieustalone w elektrycznych liniach i układach łańcuchowych. PWN Warszawa.


Published
2003-12-31



Anna Stankiewicz 
Katedra Podstaw Techniki, Akademia Rolnicza w Lublinie, ul. Doświadczalna 50A, 20-280 Lublin



License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles are made available under the CC BY-NC-ND 4.0  (recognition by authorship, non-commercial use, no dependent works).
The author signs a statement on the originality of the work and the contribution of individuals.

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.


Most read articles by the same author(s)