Skip to main navigation menu Skip to main content Skip to site footer

Vol. 34 No. 1 (2016)

Articles

The effect of copper glycine chelate on physicochemical, morphometric and strength parameters of tibia bones in broiler chickens

Submitted: July 15, 2019
Published: 2016-04-20

Abstract

The purpose of the study was to evaluate the effect of supplementation of feed mixtures for Ross 308 chickens with copper glycine chelate (Cu-Gli) on the growth of tibia bones based on their physicochemical, morphometric and strength properties. 200 one-day-old Ross 308 male chicks were split into 4 groups in 5 replications of 10 chicks each. The mixtures were supplemented with Cu in a form of CuSO4 (100% of the recommended dose) – control group – and Cu-Gli covering 100%, 50% or 25% of the total requirement of the component recommended for Ross 308 broiler chicks. After the slaughter the tibia were weighed and measured. The mechanical properties of bones (Wy and Wf) were determined in a three-point bending test by means of Zwick Z010 apparatus, and the results of measurement of the external and internal diameter of the bone shaft at the point of fracture were used as reference for determining geometric parameters (Ix, A, MRWT) and cortical indices (CLT, CS, CI, CSI). The bones, defatted and dried to constant mass, were subject to mineralisation. The content of Ca, Mg, Zn, Fe and Cu was determined by means of ASA in a Unicam 939/959 apparatus, and total P was determined according to PN-76/R-64781. The addition of Cu in the form of Cu-Gli at the level of 8 and 4 mg significantly increased the circumference of the chicken’s tibia, and when using 16 mg of Cu-Gli the highest concentration of Ca was observed compared to the group receiving CuSO4. After the use of Cu-Gli, regardless of the level of supplementation, an upward numerical trend was recorded for some cortical indices (CI, CSI), strength parameters (Wy, dy, Wy/dy, BDI) as well as for the content of crude ash and the concentration of P, Zn and Fe. The results of studies indicate that chelated Cu seems to be an efficient alternative for the traditional CuSO4 in order to ensure correct bone mineralisation in fastgrowing broilers, even at doses lower than recommended.

References

  1. Abdallah A.G., El-Husseiny O.M., Abdel-Latif K.O., 2009. Influence of some dietary organic mineral supplementations on broiler performance. Int. J. Poult. Sci. 8(3), 291–298.
  2. Aksu T., Aksu M.I., Yoruk M.A., Karaoglu M., 2011. Effects of organically complexed minerals on meat quality in chickens. Br. Poult. Sci. 52, 558–563.
  3. Alam S.M., 2001. Genetic variations in nutriens contents by wheat and its substitution lines. Pak. J. Biol. Sci. 4, 642–644.
  4. AOAC, 2000. Official Methods of Analysis. Intern. 17th ed. AOAC Inter., Gaithersburg, MD.
  5. Aviagen, 2013. Ross 308 parent stock: Nutrition specification, en.aviagen.com.
  6. Banks K.M., Thompson K.L., Rush J.K., Applegate T.J., 2004. Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poult. Sci. 83, 990–996.
  7. Bao Y.M., Choct M., Iji P.A., Bruerton K., 2007. Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poult. Res. 16, 448–455.
  8. Brzóska F., Brzeziński W., Brzóska B., 2003. Mineral nutrients in Polish feedingstuffs. Part 2. Cereal grains. Ann. Anim. Sci. 3, 311–321.
  9. El-Husseiny O.M., Hashish S.M., Ali R.A., Arafa S.A., Abd El-Samee L.D., Olemy A.A., 2012. Effects of feeding organic zinc, manganese and copper on broiler growth, carcass characteristics, bone quality and mineral content in bone, liver and excreta. Int. J. Poul. Sci. 11, 368–377.
  10. Esenbuga N., Macit M., Karaoglu M., Aksu M.I., Bilgin O.C., 2008. Effects of dietary humate supplementation to broilers on performance, slaughter, carcass and meat colour. J. Sci. Food Agric. 88, 1201–1207.
  11. Ettle T., Schlegel P., Roth X., 2008. Investigations on iron bioavailability of different sources and supply levels in piglets. J. Anin. Phys. Anim. Nutr. 92, 1, 30–45.
  12. Feng J., Ma W.Q., Xu Z.R., He J.X., Wang Y.Z., Liu J.X., 2009. The effect of iron glycine chelate on tissue mineral levels, fecal mineral concentration, and liver antioxidant enzyme activity in weanling pigs. Anim. Feed Sci. Technol. 150(1–2), 106–113.
  13. Flynn A., 2003. The role of dietary calcium in bone health. Proc. Nutr. Soc. 62, 851–858.
  14. Feng J., Ma W.Q., Xu Z.R., Wang Y.Z., Liu J.X., 2007. Effects of iron glycine chelate on growth, haematological and immunological characteristics in weanling pigs. Anim. Feed Sci. Technol. 134(3), 261–272.
  15. Ferket P.R., Oviedo-Rondón E.O., Mente P.L., Bohórquez D.V., Santos A.A.Jr., Grimes J.L., Richards J.D., Dibner J.J., Felts V., 2009. Organic trace minerals and 25-hydroxycholecalciferol affect performance characteristics, leg abnormalities, and biomechanical properties of leg bones of turkeys. Poult Sci. 88(1), 118–131.
  16. Ferretti J.L., Capozza R.F., Mondelo N., Zanchetta J.R., 1993. Interrelationships between densitometric, geometric and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modelling. J. Bone Min. Res. 8, 1395–1399.
  17. Gahrke M., 1997. Miedź i mangan w patogenezie chorób układu kostnego zwierząt. Med. Wet. 53(11), 644–646.
  18. Gheisari A.A., Rahimi-Fathkoohi A., Toghyani M., Gheisari M.M., 2010. Effects of organic chelates of zinc, manganese and copper in comparison to their inorganic sources on performance of broiler chickens. J. Anim. Plant Sci. 6, 630–636.
  19. Kini U., Nandeesh B.N., 2012. Physiology of bone formation, remodeling, and metabolism. W: Radionuclide and hybrid bone imaging. Springer, Berlin–New York, 29–57.
  20. Kwiecień M., 2012. Wpływ formy i poziomu miedzi i żelaza w paszy na wyniki odchowu oraz wybrane wskaźniki metaboliczne kurcząt brojelrów. Rozpr. Nauk. UP w Lublinie 359, Lublin.
  21. Kwiecień M., Makarski B., Zadura A., Galas D., 2005. Wpływ dodatku chelatu Cu z lizyną na skład mineralny i wytrzymałość kości piszczelowych indyków. Acta Sci. Pol. Zootechnica 4(2), 77–84.
  22. Kwiecień M., Winiarska-Mieczan A., Zawiślak K., Sroka S., 2014. Effect of copper glycinate chelate on biomechanical, morphometric and chemical properties of chicken femur. Ann. Anim. Sci. 14(1), 127–139, DOI: 10.2478/aoas-2013-0085.
  23. Kwiecień M., Winiarska-Mieczan A., Valverde Piedra J.L., Bujanowicz-Haraś B., ChałabisMazurek A., 2015a. Effects of copper glycine chelate on selected parameters carcasses, liver and fecal mineral concentrations, haematological and biochemical blood parameters in broilers. Agr. Food Sci. Finl. 24, 92–103.
  24. Kwiecień M., Samolińska W., Bujanowicz-Haraś B., 2015b. Effects of iron glycine chelate on growth, carcass characteristic, liver mineral concentrations and haematological and biochemical blood parameters in broilers. J. Anim. Physiol. Anim. Nutr. 99(6), 1184–1196, DOI: 10.1111/jpn.12322.
  25. Männer K., Simon O., Schlegel P., 2006. Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. In: M. Rodehutscord (ed.). 9. Tagung Schweine – und Geflügelernährung. Universität Halle– Wittenberg, Germany.
  26. Mikulski D., Jankowski J., Zduńczyk Z., Wróblewska M., Mikulska M., 2009. Copper balance, bone mineralization and the growth performance of turkeys fed diet with two types of Cu supplements. J. Anim. Feed Sci. 18, 677–688.
  27. Monteagudo M.D., Hernandz E.R., Seco C., Gonzales Riola J., Revilla M., Villa L.F., Rico H., 1997. Comparison of the bone robusticity index and bone weight/bone length index with the results of bone densitometry and bone histomorphometry in experimental studies. Acta Anat. 160, 195–199.
  28. Nollet L., Van der Klis J.D., Lensing M., Spring P., 2007. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J. Appl. Poult. Res. 16, 592–597.
  29. Normy żywienia drobiu. Zalecenia żywieniowe i wartość pokarmowa pasz, 2005. PAN, Warszawa.
  30. Oscar P., Ashmead H.D., 2001. Effectuveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 17, 381–384.
  31. Onyango E.M., Hester P.Y., Stroshine R., Adeola O., 2003. Bone densitometry as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poult. Sci. 82, 1787–1791.
  32. PN-76/R-64781. Pasze. Oznaczenie zawartości fosforu.
  33. Richards J.D., Zhao J., Harrell R.J., Atwell C.A., Dibner J.J., 2010. Trace mineral nutrition in poultry and swine. Asian-Aust. J. Anim. Sci. 23, 1527–1534.
  34. Rinaldi A.C., 2000. Meeting report – copper research at the top. Biometals 13, 9–13.
  35. Rozporządzenie Rady (WE) nr 1099/2009 z dnia 24 września 2009 roku w sprawie ochrony zwierząt podczas ich uśmiercania. Dz.Urz. UE L 303/1 z 2009.
  36. SCAN, 2003. Scientific Committee for Animal Nutrition: Opinion on the use of copper in feedingstuff, European Commission Publication.
  37. StatSoft, 2013. Statistica ver. 10 (data analysis software system). StatSoft, Inc., Tulsa, www.statsoft.com.
  38. Suttle N.F., 2010. The mineral nutrition of livestock, 4th ed., CABI Publishing, Oxfordshire.
  39. Van der Klis J.D., Kemme A.D., 2002. An appraisal of trace elements: Inorganic and organic. W: J.M. McNab, K.N. Boorman (eds.). Poultry feedstuffs: supply, composition and nutritive value. CAB Int., Wallingford.
  40. Winiarska-Mieczan A., Kwiecień M., 2015: The effects of copper-glycine complexes on chemical composition and sensory attributes of raw, cooked and grilled chicken meat. J. Food Sci. Technol. 52(7), 4226–4235, DOI 10.1007/s13197-014-1510-8.
  41. Wojciechowska-Mazurek M., Karłowski K., Starska K., Brulińska-Ostrowska E., Kumpulainen J.T., 1995. Contents of Pb, Cd, Cu and Zn in Polish cereal grain, flour and powdered milk.
  42. FAO, Proceedings of the Technical Workshop on Trace Elements, Natural Antioxidants and Contaminants, Helsinki, 25–26 August 1995.
  43. Wróbel S., 2000. Wpływ wieloletniego produkcyjnego użytkowania pól uprawnych na zaopatrzenie gleb i pszenicy jarej w mikroelementy. Zesz. Probl. Post. Nauk Rol. 471, 619–626.
  44. Yan F., Waldroup P.W., 2006. Evaluation of MINTREX® manganese as a source of manganese for young broilers. Int. J. Poult. Sci. 5, 708–713.
  45. Zhao J., Shirley R.B., Vazquez-Anon M., Dibner J.J., Richards J.D., Fisher P., Hampton T., Christensen K.D., Allard J.P., Giesen A.F., 2010. Effects of chelated trace minerals on growth performance, breast meat yield and footpad health in commercial meat broilers. J. Appl. Poult. Res. 19, 365–372.
  46. Ziaie H., Bashtani M., Karimi M., Torshizi A., Naeeimipour H., Farhangfar H., Zeinali A., 2011. Effect of antibiotic and its alternatives on morphometric characteristics, mineral content and bone strength of tibia in Ross broiler chickens. Global Vet. 7, 315–322.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.