Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 6 (2021)

Articles

Pre-breeding study for the enhancement of bioactive fruit attributes in strawberry (Fragaria x ananassa Duch.)

DOI: https://doi.org/10.24326/asphc.2021.6.13
Submitted: March 25, 2021
Published: 2021-12-09

Abstract

The strawberry fruit market increasingly demands new cultivars producing berries with enhanced bioactive attributes. In this research the suitability of twelve strawberry cultivars for effective breeding aimed at the enhancement of bioactive fruit attributes was studied. The group of genotypes with different pedigree was examined in respect of variation, breeding parameters, correlation between the content of bioactive compounds and the antioxidant capacity of fruit. Pre-breeding research showed the highly significant differences between genotypes regarding all traits analysed. Relationship between the bioactive phytochemicals content and antioxidant capacity of fruit were mostly positive and significant. Only correlation between vitamin C and flavonoids  was negative (−0.482). Path analysis exhibited the highest positive direct effect of total phenolic content on antioxidant capacity (0.609). Heritability of traits was very high, reaching values above 0.90. The highest genetic advance was observed for flavonoids. Results suggested that the genotype plays the main role in shaping of fruit antioxidant potential. This study indicated that the efficient strawberry breeding focused on obtaining the forms with enhanced bioactive berry properties could be highly possible.

References

  1. Aaby, K., Mazur, S., Arnfinn, N., Grete, S. (2012). Phenolic compounds in strawberry (Fragaria × ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chem., 132, 86–97. https://doi: 10.1016/j.foodchem.2011.10.037
  2. Afrin, S., Gasparrini, M., Forbes-Hernandez, T., Reboredo-Rodriguez, P., Mezzetti, B., Varela-Lopez, A., Giampieri, F., Battino, M. (2016). Promising health benefits of the strawberry: a focus on clinical studies. J. Agric. Food Chem., 64, 4435–4449, https://doi.org/10.1021/acs.jafc.6b00857
  3. Allard, R.W. (1960). Principles of plant breeding. John Wiley Sons, New York.
  4. Ariza, M., Martinez-Ferri, E., Domínguez, P., Medina, J.J., Miranda, L., Soria C. (2015). Effects of harvest time on functional compounds and fruit antioxidant capacity in ten strawberry cultivars. J. Berry Res. 5, 71–80. https://doi: 10.3233/JBR-150090
  5. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  6. Burton, G.H., De Vane, E.H. (1953). Estimating heritability from replicated clonal material. Agron. J., 45, 478–481.
  7. Capocasa, F., Scalzoa, J., Mezzetti, B., Battino, M. (2008). Combining quality and antioxidant attributes in the strawberry: the role of genotype. Food Chem., 111(4), 872–878. https://doi.org/10.1016/j.foodchem.2008.04.068
  8. Capocasa, F., Balducci, F., Marcellini, M., Bernardini, D., Navacchi, O., Mezzetti, B. (2018). Comparising nursery behaviour, field plant yield and fruit quality of in vitro and in vivo propagated strawberry mother plants. Plant Cell Tiss. Organ. Cult., 136, 65. https://doi.org/10.1007/s11240-018-1492-8
  9. Cheel, J., Theoduloz, C., Rodriguez, J.A., Caligari, P.D.S., Schmeda-Hirschmann, G. (2007). Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. × ananassa cv. Chandler. Food Chem., 102, 36–44. https://doi:10.1016/j.foodchem.2006.04.036
  10. Dewey, D.R., Lu K.H. (1959). A correlation and path coefficient analysis of components of crested wheat seed production. Agron. J., 51, 515–518.
  11. Floegel, A., Kim, D.O., Chung, S.J., Koo, S.I., Chun, O.K. (2011). Comparision of ABTS/DPPH assay to measure antioxidant capacity in popular antioxidant-rich US food. J. Food Compos. Anal., 24, 1043–1048. https://doi.org/10.1016/j.jfca.2011.01.008
  12. Graybill, F.A. (1961). An introduction to linear statistical models. Vol. 1. Mc Graw-Hill, New York, NY, USA.
  13. Holt, R.R., Zuelch M.L., Charoenwoodhipong, P., Al-Dashti Y.A., Hackman, R.M., Keen, C.L. (2020). Effects of short-term consumption of strawberry powder on select parameters of vascular health in adolescent males. Food Funct. 11, 32−44. https://doi.org/10.1039/C9FO01844A
  14. Kaczmarska, E., Gawroński, J., Jabłońska-Ryś E., Zalewska-Korona, M., Radzki, W., Sławińska, A. (2016). Hybrid performance and heterosis in strawberry (Fragaria × ananassa Duchesne), regarding acidity, soluble solids and dry matter content in fruits. Plant Breed., 135, 232–238. https://doi.org/10.1111/pbr.12350
  15. Kaczmarska, E., Gawroński, J., Jabłońska-Ryś, E., Zalewska-Korona, M., Radzki, W., Sławińska, A. (2017). General combining ability and heterosis regarding the phytochemical properties in strawberry (Fragaria × ananassa) hybrid. Plant Breed., 136, 111–118. https://doi.org/10.1111/pbr.12432
  16. Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F.J., Brar, N.S., Prohens J. (2015). Breeding vegetables with increased content in bioactive phenolic acids. Molecules, 20(10), 18464–18481. https://doi.org/10.3390/molecules201018464
  17. Kempthorne, O. (1957). An introduction to genetic statistics. Wiley, New York, NY, USA.
  18. Kim, D.O., Chun, O.K., Kim, Y.J., Moon, H.Y., Lee C.Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem., 51, 6509–6515. https://doi.org/10.1021/jf0343074
  19. Kim, D.O., Lee, K.W., Lee, H.J., Lee, C.Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem., 50, 3713–3717. https://doi.org/10.1021/jf020071c
  20. Lal, S., Ahmed, N., Singh, S.R., Singh, D.B., Sharma, O.C., Kumar, R. (2013). Variability of health and bioactive compounds in strawberry (Fragaria × ananassa Duch.) cultivars grown under an Indian temperate ecosystem. Fruits, 68, 423–434. https://doi.org/10.1051/fruits/2013086
  21. Lal, S., Singh, D. (2016). Genetic divergence among 22 strawberry (Fragaria × ananassa Duch.) genotypes for bioactive compounds grown in northwest Himalayas. SAARC J. Agric., 14(1), 81–91. https://doi.org/10.3329/sja.v14i1.29578
  22. Mezzetti, B., Giampieri, F., Zhang, Y.T., Zhong, C.F. (2018) Strawberry breeding programs and cultivation systems in Europe and the rest of the world. J. Berry Res. 8(1), 1–17. https://doi.org/10.3233/JBR-180314
  23. Mezzetti, B., Balducci, F., Capocasa, F., Zhong, C.F., Cappelletti, R., Di Vittori, L., Mazzoni, L., Giampieri, F., Battino, M. (2016). Breeding strawberry for higher phytochemicals content and claim it: is it possible?. Int. J. Fruit Sci., 16(suppl.), 194–206. https://doi.org/10.1080/15538362.2016.1250695
  24. Mishra, P.K., Ram, R.B., Kumar, N. (2015). Genetic variability, heritability and genetic advance in strawberry (Fragaria × ananassa Duch.). Turk. J. Agric. For., 39, 451–458. https://doi.org/10.3906/tar-1408-99
  25. Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B., Wrolstad, R.E. (2002). Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J. Agric. Food Chem., 50, 519–525. https://doi.org/10.1021/jf011062r
  26. Nunes, G., Teixeira, F., Schwarz, K., Camargo, C., Tadeu, J., Dos Santos, E., Franco, B., Novello, D. (2020). Influence of genetic variability on the quality of strawberry cultivars: sensorial, physical-chemical and nutritional characterization. Acta Sci-Agron., 43, 2021. https://doi.org/10.4025/actasciagron.v43i1.46862
  27. Perin, E.C., da Messias, R.S., Galli, V., Borowski, J.M., de Souza, E.R., de Avila, L.O., Bamberg, A.L., Rombaldi, C.V. (2019). Mineral content and antioxidant compounds in strawberry fruit submitted to drough stress. Food Sci. Technol., 39 (suppl. S1), 245–254. https://doi.org/10.1590/fst.09717
  28. Pincemail, L., Kevers, C., Tabart, J., Defraigne, J.O., Dommes J. (2012). Cultivars, culture conditions and harvest time influence phenolic and ascorbic acid contents and antioxidant capacity of strawberry (Fragaria × ananassa). J. Food Sci., 77(2), C205–C210. https://doi.org/10.1111/j.1750-3841.2011.02539
  29. Pott, D.M., Vallarino, J.G., Cruz-Rus, E. et al. (2020). Genetic analysis of phenylpropanoids and antioxidant capacity in strawberry fruit reveals mQTL hotspots and candidate genes. Sci. Rep., 10, 20197. https://doi.org/10.1038/s41598-020-76946-x
  30. Saridaş, M.A. (2021). Seasonal variation of strawberry fruit quality in widely grown cultivars under Mediterranean climate condition. J. Food Compos. Anal., 97, 103733. https://doi.org/10.1016/j.jfca.2020.103733
  31. Singh, A., Singh, B.K., Deka, B.C., Sanwal, S.K., Patel, R.K., Verma, M.R. (2011). The genetic variability, inheritance and inter-relationships of ascorbic acid, β-carotene, phenol and anthocyanin content in strawberry (Fragaria × ananassa Duch.). Sci. Hortic., 129(1), 86–90. https://doi.org/10.1016/j.scienta.2011.03.011
  32. Singh, P., Narayanan, S.S. (1993). Biometrical techniques in plant breeding. Kalyani Publishers, New Delhi, India.
  33. Sirijana, M., Pipattanawong, N., Saeng-on, B., Chaiprasart, P. (2020). Anthocyanin content, bioactive compounds and physico-chemical characteristics of potential new strawberry cultivars rich in-anthocyanins. J. Berry Res., 10, 397–410. https://doi.org/10.3233/JBR-190487
  34. Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 16, 24673–24706. https://doi.org/10.3390/ijms161024673
  35. Tulipani, S., Mezzetti, B., Capocasa, F., Bompadrev, S., Beekuilder, J., Ric de Vos, C.H., Copanoglu, E., Bovy, A., Battino. M. (2008). Antioxidants, phenolic compounds and nutritional quality of different strawberry genotypes. J. Agric. Food Chem., 56, 696–704. https://doi.org/ 10.1021/jf0719959
  36. Van De Velde, F., Tarola, A.M., Güemes, D., Pirovani, M.E. (2013). Bioactive compounds and antioxidant capacity of camarosa and selva strawberries (Fragaria × ananassa Duch.). Foods, 2, 120–131. https://doi.org/10.3390/foods2020120
  37. Wright, S. (1921). Systems of mating. Genetica, 6, 11–178.
  38. Wu, X., Diao, Y., Sun, C., Yang, J., Wang, Y., Sun, S. (2003). Fluorimetric determination of ascorbic acid with o – phenylenediamine. Talanta, 59, 95–99. https://doi.org/10.1016/S0039-9140(02)00475-7
  39. Żebrowska, J., Gawroński, J., Kaczmarska, E., Dyduch-Siemińska, M., Jackowska, I., Pabich, M. (2016). Nutraceutical fruit value of the new strawberry cultivars. Acta Sci. Pol. Hortorum Cultus, 15(3), 71–82.
  40. Zeist, A.R., Resende, J.T.V. (2019). Strawberry breeding in Brazil: current momentum and perspectives. Hortic. Brasil., 37, 007–016. https://doi.org//10.1590/S0102-053620190101
  41. Zeliou, K., Papasotriopoulos, V., Manoussopoulos, Y., Lamari, F.N. (2018). Physical and chemical quality characteristics and antioxidant properties of strawberry cultivars (Fragaria × ananassa Duch.) in Greece: assessment of their sensory impact. J. Sci. Food Agric., 98, 4065–4073. https://doi.org/10.1002/jsfa.8923
  42. Żurawicz, E., Bielenin, A., Lisek, J., Łapanowska, B.H., Machecki, J., Treder, W. (2005). Metodyka integrowanej produkcji truskawek. Plantpress, Kraków (in Polish).

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.