Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 5 (2022)

Articles

Morphological and biochemical diversity in Rosa species

DOI: https://doi.org/10.24326/asp.hc.2022.5.14
Submitted: October 13, 2019
Published: 2022-10-28

Abstract

The Rosa L. is one of the widely grown plants in the world and its flowers and fruits has been used in different parts of the world for centuries. Wild grown Rosa plants is one of the most important element of the natural landscape and used as rootstock for roses for centuries as well. In this study the main flower, shrub and fruit characteristics of a large number of Rosa canina L. and Rosa dumalis Bechst. genotypes naturally found in Ardahan province of Turkey has been studied. All plants found very health conditions and indicated their strong defense mechanism of the genera to harsh abiotic and biotic conditions. The majority of genotypes had attractive flowers. The genotypes exhibited fruit mass between 2.81 g to 4.60 g. SSC (soluble solid content), vitamin C, total phenolic, total flavonoid, total carotenoid, and total anthocyanin content of the genotypes ranged from 15.8–20.6%, 502–714 mg per 100 g FW (fresh weight), 405–507 mg gallic acid equivalent per 100 g FW, 1.02–2.00 mg per g FW, 8.40–13.30 mg per g FW and 4.35–6.98 mg cyanidin-3-glucoside equivalent per liter, respectively. Antioxidant activity was determined between 22.3–30.9 mg ascorbic acid equivalent per g fresh weight. Chlorogenic acid was the major phenolic acids in fruits of Rosa ecotypes. Our results indicated promising perspectives for usage of R. canina and R. dumalis fresh fruits studied with considerable levels of bioactive compounds.

References

  1. Adamczak, A., Buchwaldi, W., Zielinski, J., Mielcarek, S. (2012). Flavonoid and organic acid content in rose hips (Rosa L. Sect Caninae dc. Em. Christ). Acta Biol. Cracov., 54, 105–112. DOI: https://doi.org/10.2478/v10182-012-0012-0
  2. Akin, M., Eyduran, S.P., Ercisli, S., Kapchina-Toteva, V., Eyduran, E. (2016). Phytochemical profiles of wild blackberries, black and white mulberries from Southern Bulgaria. Biotechnol. Biotechnol. Equip., 30 (5), 899–906. DOI: https://doi.org/10.1080/13102818.2016.1204943
  3. Andersson, S.C., Rumpunen, K., Johansson, E., Olsson, M.E. (2011). Carotenoid content and composition in rose hips (Rosa spp.) during ripening, determination of suitable maturity marker and implications for health promoting food products. Food Chem., 128, 689–696. DOI: https://doi.org/10.1016/j.foodchem.2011.03.088
  4. Barros L., Carvalho, A.M., Ferreira, I.C.F.R. (2011). Exotic fruit as a source of improving the traditional use of Rosa canina fruit in Portugal. Food Res. Int., 44, 2233–2236. DOI: https://doi.org/10.1016/j.foodres.2010.10.005
  5. Balta, F., Cam, I. (1996). Some fruit properties of rose hips selected from Gevas and Ahlat district. Yuzuncu Yil Univ. J. Agric., 6, 155–160.
  6. Bolaric, S., Müller, I.D., Vokurka, A., Cepo, D.V., Ruscic, M., Srecec, S., Kremer, D. (2021). Morphological and molecular characterization of Croatian carob tree (Ceratonia siliqua L.) germplasm. Turk. J. Agric. For., 45, 807–818. DOI: https://doi.org/10.3906/tar-2107-24
  7. Bulley, S., Laing, W. (2016). The regulation of ascorbate biosynthesis. Curr. Opin. Plant Biol., 33, 15–22. DOI: https://doi.org/10.1016/j.pbi.2016.04.010
  8. Celik, F., Kazankaya, A., Ercisli, S. (2009). Fruit characteristics of some selected promising rose hip (Rosa spp.) genotypes from Van region of Turkey. Afr. J. Agric. Res., 4, 236–240.
  9. Celik, F., Kazankaya, A., Dogan, A., Gundogdu, M., Cangi, R. (2015). Some pomological and biochemical properties of rose hip (Rosa spp.) germplasm. Acta Hortic., 1089, 287–296. DOI: https://doi.org/10.17660/ActaHortic.2015.1089.37
  10. Chang, Q., Zuo, Z., Harrison, F., Chow, M.S.S. (2002). Hawthorn. J. Clin. Pharmacol., 42, 605–612. DOI: https://doi.org/10.1177/00970002042006003
  11. Chrubasik, C., Roufogalis, B.D., Müller-Ladner, U., Chrubasik, S.A. (2008). Systematic review on the Rosa canina effect and efficacy profiles. Phytother. Res., 22, 725–733. DOI: https://doi.org/10.1002/ptr.2400
  12. Cunja, V., Mikulic-Petkovsek, M., Zupan, A., Stampar, F., Schmitzer, V. (2015). Frost decreases content of sugars, ascorbic acids and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. J. Plant Physiol., 178, 55–63. DOI: https://doi.org/10.1016/j.jplph.2015.01.014
  13. Demir, N., Yildiz, O., Alpaslan, M., Hayaloglu, A.A. (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT, 57, 126–133. DOI: https://doi.org/10.1016/j.lwt.2013.12.038
  14. Dogan, H., Ercisli, S., Temim, E., Hadziabulic, A., Tosun, T., Yilmaz, S.O., Zia-Ul-Haq, M. (2014). Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. CR Acad. Bulg. Sci., 67, 1593–1600.
  15. Ercisli, S. (2005). Rose (Rosa spp.) germplasm resources of Turkey. Genet. Res. Crop Evol., 52, 787–795. DOI: https://doi.org/10.1007/s10722-003-3467-8
  16. Ercisli, S., Tosun, M., Karlidag, H., Dzubur, A., Hadziabulic, S., Aliman, Y. (2012). Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods Human Nutr., 67, 271–276. DOI: https://doi.org/10.1007/s11130-012-0292-2
  17. Eyduran, S.P., Ercisli, S., Akin, M., Beyhan, O., Gecer, M.K. (2015). Organic acids, sugars, vitamin C, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba L.) and black (M. nigra L.) mulberry genotypes. J. Appl. Bot. Food Qual., 88, 134–138.
  18. Fan, C., Pacier, C., Martirosyan, D.M. (2014). Rose hip (Rosa canina L): a functional food perspective. Funct. Foods Health Dis., 4, 493–509. DOI: https://doi.org/10.31989/ffhd.v4i12.159
  19. Fattahi, S., Jamei, R., Hosseini, S.S. (2012). Antioxidant and antiradicalic activity of Rosa canina and Rosa pimpinellifolia fruits from West Azerbaijan. Iranian J. Plant Physiol., 2, 523–529.
  20. Giusti, M.M., Wrolstad, R.E. (2001). Anthocyanins. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Current protocols in food analytical chemistry, Wrolstad, R. (ed.). John Wiley & Sons, New York, Unit F1.2.1–F1.2.13. DOI: https://doi.org/10.1002/0471142913.faf0102s00
  21. Grygorieva, O., Klymenko, S., Kuklina, A., Vinogradova, Y., Vergun, O., Sedlackova, VH., Brindza, J. (2021). Evaluation of Lonicera caerulea L. genotypes based on morphological characteristics of fruits germplasm collection. Turk. J. Agric. For, 45, 850–860. DOI: https://doi.org/10.3906/tar-2002-14
  22. Guerrero, C.J., Ciampi, P.L., Castilla, A.C., Medel, S.F., Schalchli, H.S., Hormazabal, E.U., Bensch, E.T., Alberdi, M.L. (2010). Antioxidant capacity, anthocyanins, and total phenols of wild and cultivated berries in Chile. Chil. J. Agric. Res., 70, 537–544. DOI: https://doi.org/10.4067/S0718-58392010000400002
  23. Guimarães, R., Barros, L., Carvalho, A., Ferreira, I.C.F.R. (2010). Studies on chemical constituents and bioactivity of Rosa micrantha: an alternative antioxidants source for food, pharmaceutical, or cosmetic applications. J. Agric. Food Chem., 58, 6277–6284. DOI: https://doi.org/10.1021/jf101394w
  24. Guimarães, R., Barros, L., Dueñas, M., Carvalho, A.M., Queiroz, M.J.R.P., Santos-Buelga, C., Ferreira, I.J.F.R. (2013). Characterization of phenolic compounds in wild fruits from Northeastern. Portugal. Food Chem., 141, 3721–3730. DOI: https://doi.org/10.1016/j.foodchem.2013.06.071
  25. Hasanbegovic, J., Hadziabulic, S., Kurtovic, M., Gasi, F., Lazovic, B., Dorbic, B., Skender, A. (2021). Genetic characterization of almond (Prunus amygdalus L.) using microsatellite markers in the area of Adriatic Sea. Turk. J. Agric. For., 45, 797–806. DOI: https://doi.org/10.3906/tar-2103-82
  26. Honkanen, E., Hirvi, T. (1990). The flavour of berries. In: Food Flavors: Part C, The flavor of fruits, I.D. Morton, J.D. MacLeod (eds.). Elsevier, Amsterdam, 131.
  27. Ikinci, A., Bolat, I., Ercisli, S., Kodad, O. (2015). Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biol. Res., 47, 71. DOI: https://doi.org/10.1186/0717-6287-47-71
  28. Kan, T. (2021). Less known fruit specie, Rosa villosa L.: phenotypic and biochemical content, Erwerbs-Obstbau., 63, 417–423. DOI: https://doi.org/10.1007/s10341-021-00601-6
  29. Kazankaya, A., Yilmaz, H., Yilmaz, M. (2001). Selections of rose hips from Adilcevaz district. Yuzuncu Yil Univ. J. Agric., 11, 29–34.
  30. Kazankaya, A., Turkoglu, N., Yilmaz, M., Balta, M.F. (2005). Pomological description of Rosa canina selections from Eastern Anatolia, Turkey. Int. J. Bot., 1, 100–102. DOI: https://doi.org/10.3923/ijb.2005.100.102
  31. Liang, N., Kitts, D.D. (2016). Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 8, 16. DOI: https://doi.org/10.3390/nu8010016
  32. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol., 148, 350–382. DOI: https://doi.org/10.1016/0076-6879(87)48036-1
  33. Rodriguez-Delgado, M.A., Malovana, S., Perez, J.P., Borges, T., Garcia-Montelongo, F.J., 2001. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chroma., 912, 249–257. DOI: https://doi.org/10.1016/S0021-9673(01)00598-2
  34. Roman, I., Stanila, A., Stanila, S. (2013). Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transilvania. Chem. Cent., J., 7, 2–10. DOI: https://doi.org/10.1186/1752-153X-7-73
  35. Roobha, J.J., Saravanakumar, M., Aravindhan, K.M., Devi, P.S. (2011). The effect of light, temperature, pH on stability of anthocyanin pigments in Musa acuminata bract. Res Plant Biol., 1, 5–12.
  36. Shameh, S., Alirezalu, A., Hosseini, B., Maleki, R. (2019). Fruit phytochemical composition and color parameters of 21 accessions of five Rosa species grown in North West Iran. J. Sci. Food Agric., 99(13), 5740–5751. https://doi.org/10.1002/jsfa.9842 DOI: https://doi.org/10.1002/jsfa.9842
  37. Yildiz, O., Alpaslan, M. (2012). Properties of rose hip marmalades. Food Technol. Biotechnol., 50, 98–106.
  38. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158.
  39. Uggla, M., Gao, X., Werlemark, G. (2003). Variation among and within dogrose taxa (Rosa sect. Caninae) in fruit weight, percentages of fruit flesh and dry matter, and vitamin C content. Acta Agric. Scand, B, 53, 147–155. DOI: https://doi.org/10.1080/09064710310011746
  40. Ulrich D., Hoberg E. (2000). Flavour analysis in plant breeding research on strawberries. In: Frontiers of flavour sciences, Schieberle P., Engel K.-H. (eds.). Deutsche Forschungsanstalt Lebensmittelchemie, Garching, 161–163.
  41. Veberic, R., Jakopic, J., Stampar, F., Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem., 114, 511–515. DOI: https://doi.org/10.1016/j.foodchem.2008.09.080
  42. Yamankaradeniz, R. (1983). Physical and chemical properties of rosehip (Rosa spp.). J. Food., 8, 151–156.
  43. Yoo, K.M., Lee, C.H., Lee, H., Moon, B., Lee, C.Y. (2008). Relative antioxidant and cytoprotective of common herbs. Food Chem., 106, 926–936. DOI: https://doi.org/10.1016/j.foodchem.2007.07.006

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.