Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Effect of gaps size on the growth of pedunculate oak in stands managed with a partial group cutting

Katarzyna Masternak

Uniwersytet Przyrodniczy w Lublinie, Wydział Agrobioinżynierii, Instytut Genetyki, Hodowli i Biotechnologii Roślin, ul. Akademicka 15, 20-950 Lublin, Polska
https://orcid.org/0000-0001-6883-7526

Katarzyna Głębocka

Uniwersytet Przyrodniczy w Lublinie, Wydział Agrobioinżynierii, Instytut Genetyki, Hodowli i Biotechnologii Roślin, ul. Akademicka 15, 20-950 Lublin, Polska
https://orcid.org/0000-0002-9601-4487


Abstract

The aim of the study was to determine the effect of the gap size on the growth of pedunculate oak in two forest habitat types (fresh mixed coniferous forest BMśw and fresh forest Lśw). The research was carried out in the Świdnik Forest District. Measurements were made for 12, 20, 25, 50 ares gaps. The growth traits were measured on the designated sample plots and the habit form of the crown and slenderness coefficient was assessed.

The results of the research show that the growth traits of oaks within gaps differed between the analyzed habitats. In each case, the higher trees were found in the Lśw habitat. Correlation analysis showed a significant relationship between the gap size and the height of the oaks growing in them. The Spearman correlation coefficient for the Lśw habitat was 0.301, and for the BMśw habitat 0.695. In both habitats, the highest growth was achieved by oaks on gaps of 20 and 25 ares sized. Taking into account both parameters it can be stated that the most optimal growth conditions are in middle size gaps.

Regardless of the habitat and the gap size, the artificial regeneration oaks growing in the eastern and central part of the gaps was characterized by the highest height. The results of the research on the habit form in both habitats indicate that almost half of the trees were oaks with broad-crowned crowns. The remaining forms accounted for about twice less trees.

Keywords:

gaps, growth traits, pedunculate oak, artificial regeneration

Andrzejczyk T., Bolibok L., Buraczyk W., Drozdowski S., Szeligowski H., 2014a. Wpływ warunków siedliskowych na zróżnicowanie wysokości dębu na gniazdach. Sylwan 158(6), 404–413. https://doi.org/10.26202/sylwan.2013098

Andrzejczyk T., Dzwonkowski M., Pawłowski M., Działak R., 2014b. Wpływ osłony bocznej drzewostanu na wzrost dębu bezszypułkowego (Quercus petraea) i grabu pospolitego (Carpinus betulus) w fazie uprawy. Sylwan 158(10), 723–732. https://doi.org/10.26202/sylwan.2014004

Bernadzki E., 2000. Cięcia odnowieniowe. Poradnik leśniczego. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.

Bernadzki E., Grynkiewicz J., 2006. Konsekwencje hodowlane obumierania dębów. Sylwan 150(8), 61–69. https://doi.org/10.26202/sylwan.2005159

Bolibok L., Andrzejczyk T., Drozdowski S., Szeligowski H., 2011. Wysokość siedmioletnich odnowień dębowych na gniazdach w różnych warunkach siedliskowych. Leśne Pr. Badaw. 72(2), 167–170. DOI: https://doi.org/10.2478/v10111-011-0016-7

Bolibok L. 2009., Regulacja warunków wzrostu odnowień na gniazdach – wpływ parametrów gniazd na oddziaływanie czynników biotycznych. Sylwan 153(11), 733–744. https://doi.org/10.26202/sylwan.2009029

Bolibok L., Auchimik J., 2010. Kształtowanie się wysokości upraw dębowych w centrum i na obrzeżu gniazd na siedlisku lasu mieszanego świeżego. Sylwan 154(6), 371–380. https://doi.org/10.26202/sylwan.2009212

Burschel P., Huss J., 2003. Grundriss des Waldbaus: Ein Leitfaden für Studium und Praxis. Stuttgart.

Chauvat M., Titsch D., Zaitsev A., Wolters V., 2011. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. Forest Ecol. Manag. 262, 317–324. https://doi.org/10.1016/j.foreco.2011.03.037 DOI: https://doi.org/10.1016/j.foreco.2011.03.037

Coates K., 2002. Tree recruitment in gaps of various size, clearcuts and undisturbed mixed forest of interior British Columbia, Canada. Forest Ecol. Manag. 155, 387–398. https://doi.org/10.1016/S0378-1127(01)00574-6 DOI: https://doi.org/10.1016/S0378-1127(01)00574-6

Coomes D. A., Grubb P. J., 2000. Impacts of root competition in forests and woodlands: A theoretical framework and review of experiments. Ecol. Monogr. 70(2), 171–207. https://doi.org/10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2

Diaci J., Györek N., Gliha J., Nagel T. A., 2008. Response of Quercus robur L. seedlings to northsouth asymmetry of light within gaps in floodplain forests of Slovenia. Ann. For Sci. 65, 105. https://doi.org/10.1051/forest:2007077 DOI: https://doi.org/10.1051/forest:2007077

Drozdowski S., Andrzejczyk T., Buraczyk W., Turkot S., 2013. Wysokość dwunastoletnich odnowień dębu szypułkowego na różnej wielkości gniazdach o wydłużonym kształcie w kierunku wschód−zachód. Sylwan 157(6), 434–441. https://doi.org/10.26202/sylwan.2012131

Eaton E., Caudullo G., Oliveira S., de Rigo D., 2016. Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. W: J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, A. Mauri (red.), European atlas of forest tree species. Publication Office of the European Union, Luxembourg, 160–163.

Goddess C.M., Palutikof J.P., Davies T.D., 1990. A first approach to assessing future climate states in the UK over very long timescales: Input to studies of the integrity of radioactive waste repositories. Clim. Change 16(1), 115–139. https://doi.org/10.1007/BF00137349 DOI: https://doi.org/10.1007/BF00137349

Gray A.N., Spies T.A., 1996. Gap size, within-gap position and canopy structure effects on conifer seedling establishment. J. Ecol. 84(5), 635–645. https://doi.org/10.2307/2261327 DOI: https://doi.org/10.2307/2261327

Gray A.N., Spies T.A., Easter M.J., 2002. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can. J. Forest Res. 32(2), 332–343. https://doi.org/10.1139/X01-200 DOI: https://doi.org/10.1139/x01-200

GUS, 2020. Rocznik Statystyczny Leśnictwa 2019. Warszawa.

van Halder I., Castagneyrol B., Ordóñez C., Bravo F., del Río M., Perrot L., Jactel H., 2019. Tree diversity reduces pine infestation by mistletoe. For Ecol Manag, 449, 117470. https://doi.org/10.1016/j.foreco.2019.117470 DOI: https://doi.org/10.1016/j.foreco.2019.117470

Jaime L., Batllori E., Margalef-Marrase J., Pérez Navarro M.Á., Lloret F., 2019. Scots pine (Pinus sylvestris L.) mortality is explained by the climatic suitability of both host tree and bark beetle populations. Forest Ecol. Manag. 448, 119–129. https://doi.org/10.1016/j.foreco.2019.05.070 DOI: https://doi.org/10.1016/j.foreco.2019.05.070

Jaworski A., 2011. Hodowla lasu. T. 3: Charakterystyka hodowlana drzew i krzewów leśnych. PWRiL, Warszawa.

Jelonek T., Walkowiak R., Jakubowski M., Tomczak A., 2013. Wskaźniki stabilności drzew w drzewostanach sosnowych uszkodzonych przez wiatr. Sylwan 157(05), 323–329. https://doi.org/10.26202/sylwan.2012075

Kundziniš A.W., 1972. Lesnaja selekcja. Moskva, Izd. Les. Promyšlennost.

McNab W.H., 1991. Factors affecting temporal and spatial soil moisture variation in and adjacent to group selection openings. W: L.H. Cormick, K.W. Gottschalk (red.). Proceedings 8th Central Hardwood Forest Conference. University Park, Pennsylvania March 4–6, 1991, 475–488. https://www.nrs.fs.fed.us/pubs/gtr/gtr_ne148%20papers/39mcnab-gtr148.pdf

Nölte A., Yousefpour R., Hanewinkel M., 2020. Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model. Ecol. Model, 438, 109285. https://doi.org/10.1016/j.ecolmodel.2020.109285 DOI: https://doi.org/10.1016/j.ecolmodel.2020.109285

Perkins D., Uhl E., Biber P., Du Toit B., Carraro V., Rötzer T., Pretzsch H., 2018. Impact of climate trends and drought events on the growth of oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range. Forests 9(3), 108. https://doi.org/10.3390/f9030108 DOI: https://doi.org/10.3390/f9030108

Petritan A.M., Biris I.A., Merce O., Turcu D.O., Petritan I.C., 2012. Structure and diversity of a natural temperate sessile oak (Quercus petraea L.) – European Beech (Fagus sylvatica L.) forest. Forest Ecol. Manag. 280, 140–149. https://doi.org/10.1016/j.foreco.2012.06.007 DOI: https://doi.org/10.1016/j.foreco.2012.06.007

Polansky B., Čižek J., Jurča J., Mezera A., Vyskot M., 1971. Hodowla lasu. PWRiL. Warszawa.

Savva Y., Oleksyn J., Reich P. B., Tjoelker M. G., Vaganov E. A., Modrzynski J., 2006. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees 20 (6), 735–746. https://doi.org/10.1007/s00468-006-0088-9 DOI: https://doi.org/10.1007/s00468-006-0088-9

Skrzyszewski J., Pach M., 2021. The use of the slenderness coefficient in diagnosing wind damage risks. Acta Silv. 57, 7–24. DOI: https://doi.org/10.15576/ActaSilvestria/2020.LVII.7

Stat Soft. Inc. Statistica (data analysis software system) version 13,1. 2016 www.statsoft.com.

Tyszkiewicz S., Obmiński Z., 1963. Hodowla i uprawa lasu. PWRiL, Warszawa.

Wilson J., Oliver C., 2011. Stability and density management in Douglas-fir plantations. Can. J. For. Res., 30, 910–920. https://doi.org/10.1139/x00-027 DOI: https://doi.org/10.1139/x00-027

Włoczewski T., 1968. Ogólna hodowla lasu. PWRiL, Warszawa.

Zabielski B., Magnuski K., Ważyński B., Żółciak E., 1963. Analiza rozwoju odnowień dębowych w drzewostanie sosnowym zagospodarowanym rębnią gniazdową. Rocz. Wyż. Szk. Rol. Pozn. Zabielski B., 1967. Lasy doświadczalne Wyższej Szkoły Rolniczej w Poznaniu. Wyd. WSP, Poznań.

Zasady hodowli lasu, 2012. Centrum Informacyjne Lasów Państwowych na zlecenie Dyrekcji Generalnej Lasów Państwowych, Warszawa.


Published
2022-07-27



Katarzyna Masternak 
Uniwersytet Przyrodniczy w Lublinie, Wydział Agrobioinżynierii, Instytut Genetyki, Hodowli i Biotechnologii Roślin, ul. Akademicka 15, 20-950 Lublin, Polska https://orcid.org/0000-0001-6883-7526
Katarzyna Głębocka 
Uniwersytet Przyrodniczy w Lublinie, Wydział Agrobioinżynierii, Instytut Genetyki, Hodowli i Biotechnologii Roślin, ul. Akademicka 15, 20-950 Lublin, Polska https://orcid.org/0000-0002-9601-4487



License

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 

Agronomy Science has adopted a self-archiving policy called blue by the Sherpa Romeo database. From 2021 authors can self-archive article postprints and editorial versions (under the CC BY 4.0 licence). Articles from earlier years (available under the CC BY-NC-ND 4.0 licence) can only be self-archived as editorial versions.


Most read articles by the same author(s)