Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Effect of sewage sludge-based phosphate fertilizers on yield, chemical composition of plants and soil

Anna Jama-Rodzeńska

Instytut Agroekologii i Produkcji Roślinnej, Zakład Uprawy Roślin, UP Wrocław, pl. Grunwaldzki 24A, 50-363 Wrocław
https://orcid.org/0000-0003-4864-7367

Bernard Gałka

Instytut Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska, Wydział Przyrodniczo-Technologiczny, Uniwersytet Przyrodniczy we Wrocławiu, Polska
https://orcid.org/0000-0002-4555-9460


Abstract

Phosphorus is an essential but limited in occurrence element of great importance for all living organisms, including plants. The world’s phosphate deposits used for the production of phosphate fertilizers are rapidly depleting, hence this element was placed on the so-called list of critical raw materials. Agriculture and horticulture are highly dependent on the use of phosphate fertilizers to maintain the production of high quality food and feed. The demand for phosphorus as a fertilizer is projected to increase as the world population grows from the current 7.2 billion to 9.6 billion in 2050. Hence, alternative sources of it should be sought. Potential sources of phosphorus are different kinds of waste, e.g. sewage sludge or ashes produced as a result of their combustion. Direct use of sewage sludge in agriculture and its storage is currently being replaced by thermal utilization or recovery of nutrients. Thanks to the use of circular economy, sewage sludge as a potentially hazardous waste, which is also rich in phosphorus, is transformed into a finished product and returned to the environment in the form of fertilizers. The product of phosphorus recovery from
sewage sludge is, among others, struvite, which can be successfully used in agriculture. A priority of EU economic policy is the production of fertilizers in a sustainable manner, which will be met, for example, by the production of struvite. Struvite contains not only phosphorus, but also nitrogen and magnesium in its composition. The amount of phosphorus and magnesium that can be introduced to the soil with struvite is higher than that of typical mineral fertilizers. In turn, the amount of nitrogen is lower than in typical fertilizers (about 5% N) and very low in the case of potassium. Therefore, it is recommended to use struvite in combination with conventional fertilizers for optimal balance of individual macronutrients. Struvite is considered an effective slow-release nutrient fertilizer that can be successfully applied to agricultural, vegetable and ornamental crops. Low salinity index, limited leaching of nutrients and high quality of the fertilizer resulting from low content of heavy metals make struvite an environmentally friendly fertilizer. Struvite as a soil fertiliser does not increase the content of heavy metals in plants and soil. The application of struvite positively affects the yields of many crop species. Preliminary studies on its use in crop production even indicate higher efficacy compared to typical water-soluble phosphorus fertilizers. Therefore, future research on struvite should focus on optimizing the production and use of sludge-based fertilizers for fertilizing various agricultural, horticultural and fruit crops.

Keywords:

struvite, sewage sludge, phosphorus, yield, chemical composition

Amann A., Zoboli O., Krampe J., Rechberger H., Zessner M., Egle L., 2018. Environmental impacts of phosphorus recovery from municipal wastewater. Resour Conserv Recycl. 130, 127–139. https://doi.org/10.1016/j.resconrec.2017.11.002 DOI: https://doi.org/10.1016/j.resconrec.2017.11.002

Bezak-Mazur E., Stoińska R., 2013. Znaczenie fosforu w środowisku – artykuł przeglądowy. Arch. Waste Manag. Environ. Prot. 15(3), 33–42 [in Polish].

Bezak-Mazur E., Mazur A., 2011. Specjacja fosforu w osadach ściekowych powstających w technologii EvU-PERL. Ochr. Śr. Zasobów Nat. 49, 382–388.

Bień J., Neczaj E., Worwąg M., Grosser A., Nowak D., Milczarek M., Janik M., 2013. Kierunki zagospodarowania osadów w Polsce po roku 2013. Inż. Ochr. Śr. 14(4), 375–384.

Bonvin C., Etter B., Udert K.M., Frossard E., Nanzer S., Tamburini F., Oberson A., 2015. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio. 44(2), 17–27. https://doi.org/10.1007/s13280-014-0616-6 DOI: https://doi.org/10.1007/s13280-014-0616-6

Buckwell A., Nadeu E. 2016. Nutrient recovery and reuse (NRR) in European agriculture. A review of the issues, opportunities, and actions, https://www.organicseurope.bio/content/uploads/2020/06/2016_RISE_NRR_Full_EN_compressed.pdf?dd

Bunce J.T., Ndam E, Ofiteru I.D., Moore A., Graham D.W., 2018. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front. Environ. Sci. 6(8). https://doi.org/10.3389/fenvs.2018.00008 DOI: https://doi.org/10.3389/fenvs.2018.00008

Cabeza R., Steingrobe B., Römer W., Claassen N., 2011. Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr. Cycl. Agroecosystems 91(2). https://doi.org/10.1007/s10705-011-9454-0 DOI: https://doi.org/10.1007/s10705-011-9454-0

Childers D.L., Corman J., Edwards M., Elser J.J., 2011. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Bioscience 61(2), 117–124. https://doi.org/10.1525/bio.2011.61.2.6 DOI: https://doi.org/10.1525/bio.2011.61.2.6

Cieślik B., Konieczka P., 2017. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 142(4), 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116 DOI: https://doi.org/10.1016/j.jclepro.2016.11.116

Cieślik B.M., Namieśnik J., Konieczka P., 2015. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 90, 1–15. https://doi.org/10.1016/j.jclepro.2014.11.031 DOI: https://doi.org/10.1016/j.jclepro.2014.11.031

Cornel P., Schaum C., 2009. Phosphorus recovery from wastewater: Needs, technologies and costs. Water Sci Technol. 59(6), 1069–1076. https://doi.org/10.2166/wst.2009.045 DOI: https://doi.org/10.2166/wst.2009.045

Dai J.Y., Chen L., Zhao J.F., Ma N., 2006. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge. J. Environ. Sci. (China) 18(6), 1094–1100. https://doi.org/10.1016/s1001-0742(06)60045-4 DOI: https://doi.org/10.1016/S1001-0742(06)60045-4

Degryse F., Baird R., da Silva R.C., McLaughlin M.J., 2017. Dissolution rate and agronomic effectiveness of struvite fertilizers – effect of soil pH, granulation and base excess. Plant Soil. 410, 139–152. https://doi.org/10.1007/s11104-016-2990-2 DOI: https://doi.org/10.1007/s11104-016-2990-2

Dissanayake C.B., Chandrajith R., 2009. Phosphate Mineral Fertilizers, trace metals and human health. J. Natl Sci Found Sri Lanka. 37 (3), 153-165. https://doi.org/10.4038/jnsfsr.v37i3.1219 DOI: https://doi.org/10.4038/jnsfsr.v37i3.1219

EC, 2020. Critical raw materials, https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en [dostęp: 11.07.2022].

Egle L., Rechberger H., Krampe J., Zessner M., 2016. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ. 571, 522–542. https://doi.org/10.1016/j.scitotenv.2016.07.019 DOI: https://doi.org/10.1016/j.scitotenv.2016.07.019

Egle L., Rechberger H., Zessner M., 2015. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 105(B), 325–346. https://doi.org/10.1016/j.resconrec.2015.09.016 DOI: https://doi.org/10.1016/j.resconrec.2015.09.016

Eurostat, 2017. Waste Statistics/es. Statistics Explained. Com Eur. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics [dostęp: 11.07.2022].

Gawdzik J., Długosz J., Urbaniak M., 2015. General characteristics of the quantity and quality of sewage sludge from selected wastewater treatment plants in Świętokrzyskie province. Environ. Prot Eng. 41, 107–117. DOI: https://doi.org/10.37190/epe150209

Geissler B., Hermann L., Mew M.C., Steiner G., 2018. Striving toward a circular economy for phosphorus: The role of phosphate rock mining. Minerals 8(9), 395. https://doi.org/10.3390/min809039 DOI: https://doi.org/10.3390/min8090395

Ghosh G.K., Mohan K.S., Sarkar A.K., 1996. Characterization of soil-fertilizer P reaction products and their evaluation as sources of P for gram (Cicer arietinum L.). Nutr. Cycl. Agroecosyst. 46(1), 71–79. DOI: https://doi.org/10.1007/BF00210225

González-Ponce R., García-López-de-Sá M.E., 2007. Evaluation of struvite as a fertilizer: A comparison with traditional P sources. Agrochimica 51(6), 301 308.

Guidi Nissim W., Cincinelli A., Martellini T., Alvisi L., Palm E., Mancuso S., Azzarello E., 2018. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environ Res. 356–366. https://doi/org/10.1016/j.envres.2018.03.009 DOI: https://doi.org/10.1016/j.envres.2018.03.009

Hermann L., Kraus F, Hermann R., 2018. Phosphorus processing-potentials for higher efficiency. Sustainability 10(5), 1482. https://doi.org/10.3390/su10051482 DOI: https://doi.org/10.3390/su10051482

Herzel H., Krüger O., Hermann L., Adam C., 2016. Sewage sludge ash – A promising secondary phosphorus source for fertilizer production. Sci. Total Environ. 542, 1136–1143. https://doi.org/10.1016/j.scitotenv.2015.08.059 DOI: https://doi.org/10.1016/j.scitotenv.2015.08.059

Hoornweg D., Bhada-Tata P., Kennedy C., 2013. Environment: waste production must peak this century Nature, 502, 615–617. https://doi.org/10.1038/502615a DOI: https://doi.org/10.1038/502615a

Jama-Rodzeńska, A., Sowiński J., Koziel J.B.A., 2021. Phosphorus recovery from sewage sludge ash based on cradle-to-cradle approach – mini-review. Minerals 11(985). https://doi.org/10.3390/min11090985 DOI: https://doi.org/10.3390/min11090985

Johnston A.E., Richards I.R., 2003. Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use Manag. 19(1), 45–49. https://doi.org/10.1079/SUM2002162 DOI: https://doi.org/10.1111/j.1475-2743.2003.tb00278.x

Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R., 2017. Sewage sludge disposal strategies for sustainable development. Environ. Res. 156, 39–46. https://doi/org/10.1016/j.envres.2017.03.010 DOI: https://doi.org/10.1016/j.envres.2017.03.010

Krüger O, Adam C., 2014. Recovery potential of German sewage sludge ash. Waste Manag. 45, 400–406. https://doi.org/10.1016/j.wasman.2015.01.025 DOI: https://doi.org/10.1016/j.wasman.2015.01.025

Latifian M., Liu J., Mattiassona B., 2012. Struvite-based fertilizer and its physical and chemical properties. Environ. Technol. (United Kingdom) 33(22–24), 2691–2697. https://doi.org/10.1080/09593330.2012.676073 DOI: https://doi.org/10.1080/09593330.2012.676073

Li B., Boiarkina I., Yu W., Huang H.M., Munir T., Wang G.Q., Young B.R., 2019. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 648, 1244–1256. https://doi.org/10.1016/j.scitotenv.2018.07.166 DOI: https://doi.org/10.1016/j.scitotenv.2018.07.166

MacDonald G.K., Bennett E.M., Potter P.A., Ramankutty N., 2011. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 108(7), 3086–3091. https://doi.org/10.1073/pnas.1010808108 DOI: https://doi.org/10.1073/pnas.1010808108

Massey M.S., Davis J.G., Ippolito J.A., Sheffield R.E., 2009. Effectiveness of recovered phosphate as fertilizers in neutral and slightly alkaline soils. Agron. 101, 323–329. DOI: https://doi.org/10.2134/agronj2008.0144

Morse G.K., Brett S.W., Guy J.A., Lester J.N., 1998. Review: Phosphorus removal and recovery technologies. Sci Total Environ. 212, 69–89. DOI: https://doi.org/10.1016/S0048-9697(97)00332-X

Nguyen N.K., Chaudhary D.K., Dahal R.H., Trinh N.H., Kim J., Chang S.W., Hong Y., La D.D., Nguyen X.C., Ngo H.H., Chung W.J., Nguyen D.D., 2021. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge, Fuel 285(1). DOI: https://doi.org/10.1016/j.fuel.2020.119105

Peng L., Dai H., Wu Y., Peng Y., Lu X., 2018. A comprehensive review of phosphorus recovery from

wastewater by crystallization processes. Chemosphere 197, 768-781. https://doi/org/10.1016/j.chemosphere.2018.01.098.

Plaza C., Sanz R., Clemente C., Fernández J.M., González R., Polo A., Colmenarejo M.F., 2007. Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants. J. Agric. Food Chem. 55(20), 8206–8212. https://doi.org/10.1021/jf071563y DOI: https://doi.org/10.1021/jf071563y

Rahman M.M., Salleh M.A.M., Rashid U., Ahsan A., Hossain M.M., Ra C.S., 2014. Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arab. J. Chem. 7, 139–155. DOI: https://doi.org/10.1016/j.arabjc.2013.10.007

Reza A., Shim S., Kim S., Ahmed N., Won S., Ra C., 2019. Nutrient leaching loss of pre-treated struvite and its application in Sudan grass cultivation as an eco-friendly and sustainable fertilizer source. Sustainability 11(15), 4204. https://doi.org/10.3390/su11154204 DOI: https://doi.org/10.3390/su11154204

Rhyner C.R., Schwartz L.J., Wenger R.B., Kohrell M.G.,1995. Waste generation. W: C.R. Rhyner, L.J. Schwartz, R.B.Wenger, M.G. Kohrell, Waste management and resource recovery. Boca Raton. https://doi.org/10.1201/9780203734278 DOI: https://doi.org/10.1201/9780203734278

Ricardo G.P., López-de-Sá E.G., Plaza C., 2009. Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater. HortScience 44, 2. https://doi.org/10.21273/HORTSCI.44.2.426 DOI: https://doi.org/10.21273/HORTSCI.44.2.426

Rittl T., Krogstad T., Eikås S., Saltnes T., Sørensen G., Glestad H.E., Løes A., 2019. Effects of struvite application on soil and plants: a short‐term field study. Norsøk Rep. 4(10), https://orgprints.org/id/eprint/36472/1/NORS%C3%98K%20RAPPORT%2010%20struvitt%20FINAL%20Sept%205%202019%20trykk.pdf

Ronteltap M., Maurer M., Gujer W., 2007. Struvite precipitation thermodynamics in source-separated urine. Water Res. 41(5), 977–984. https://doi.org/10.1016/j.watres.2006.11.046 DOI: https://doi.org/10.1016/j.watres.2006.11.046

Roy E.D., 2017. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 98, 213–227. https://doi.org/10.1016/j.ecoleng.2016.10.076 DOI: https://doi.org/10.1016/j.ecoleng.2016.10.076

Scholz R.W., Ulrich A.E., Eilittä M., Roy A., 2013. Sustainable use of phosphorus: A finite resource. Sci. Total Environ. 461–462, 799–803. https://doi.org/10.1016/j.scitotenv.2013.05.043 DOI: https://doi.org/10.1016/j.scitotenv.2013.05.043

Sengupta S., Nawaz T., Beaudry J., 2015. Nitrogen and phosphorus recovery from wastewater. Curr. Pollut. Reports 1(3), 155–166. DOI: https://doi.org/10.1007/s40726-015-0013-1

Shu L., Schneider P., Jegatheesan V., Johnson J., 2006. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 97(17), 2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005 DOI: https://doi.org/10.1016/j.biortech.2005.11.005

Siciliano A., 2016. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environ Sci Pollut Res. 23(6), 5949–5959. https://doi.org/10.1007/s11356-015-5846-z DOI: https://doi.org/10.1007/s11356-015-5846-z

Smol M., Kulczycka J., Kowalski Z., 2016. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus – Polish case study. J. Environ. Manag. 184(Pt 3), 617–628. https://doi.org/10.1016/j.jenvman.2016.10.035 DOI: https://doi.org/10.1016/j.jenvman.2016.10.035

Spanoghe J., Grunert O., Wambacq E., Sakarika M., Papini G., Alloul A., Spiller M., Derycke V., Stragier L., Verstraete H., Fauconnier K., Verstraete W., Haesaert G., Vlaeminck S.E., 2020.

Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microb Biotechnol. 13(5), 1377–1389. https://doi.org/10.1111/1751-7915.13554 DOI: https://doi.org/10.1111/1751-7915.13554

Szymańska M., Sosulski T., Bożętka A., Dawidowicz U., Wąs A., Szara E., Malak-Rawlikowska A., Sulewski P., van Pruissen G.W.P., Cornelissen R.L., 2020. Evaluating the struvite recovered from anaerobic digestate in a farm bio-refinery as a slow-release fertiliser. Energies 13(20), 5342. https://doi.org/10.3390/en13205342 DOI: https://doi.org/10.3390/en13205342

Szymańska M., Szara E., Wąs A., Sosulski T., van Pruissen G.W.P., Cornelissen R.L., 2019. Struvite – an innovative fertilizer from anaerobic digestate produced in a bio-refinery. Energies 12(2), 296. https://doi.org/10.3390/en12020296 DOI: https://doi.org/10.3390/en12020296

Talboys P.J, Heppell J., Roose T., Healey J.R., Jones D.L., Withers P.J.A., 2016. Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil. 401, 109–123. https://doi.org/10.1007/s11104-015-2747-3. DOI: https://doi.org/10.1007/s11104-015-2747-3

Teah H.Y., Onuki M., 2017. Support phosphorus recycling policy with social life cycle assessment: A case of Japan. Sustainability 9, 1223. https://doi.org/10.3390/su9071223 DOI: https://doi.org/10.3390/su9071223

Tytła M., 2019. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland – case study. Int. J. Environ. Res. Public Health 16(13), 2430. https://doi.org/10.3390/ijerph16132430 DOI: https://doi.org/10.3390/ijerph16132430

UND – United Nations Department of Economic and Social Affairs Population Division, 2017. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables, ESA/P/WP/248.

Uysal A., Yilmazel Y.D., Demirer G.N., 2010. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard Mater. 181(1–3), 248–254. https://doi.org/10.1016/j.jhazmat.2010.05.004 DOI: https://doi.org/10.1016/j.jhazmat.2010.05.004

Wen G., Huang L., Zhang X., Hu Z., 2019. Uptake of nutrients and heavy metals in struvite recovered from a mixed wastewater of human urine and municipal sewage by two vegetables in calcareous soil. Environ. Technol. Innov. 15(2). DOI: https://doi.org/10.1016/j.eti.2019.100384

Withers P.J.A., Forber K.G., Lyon C., Rothwell S., Doody D.G., Jarvie H.P., Martin-Ortega J., Jacobs B., Cordell D., Patton M., Camargo-Valero M.A., Cassidy R., 2020. Towards resolving the phosphorus chaos created by food systems. Ambio 49, 1076–1089. https://doi.org/10.1007/s13280-019-01255-1 DOI: https://doi.org/10.1007/s13280-019-01255-1

Zeng C., Zhang C., Zeng J., Luo H., Tian D., Zhang H., Long F., Xu Y., 2015. Noises-induced regime shifts and -enhanced stability under a model of lake approaching eutrophication. Ecol. Complex. DOI: https://doi.org/10.1016/j.ecocom.2015.02.005


Published
2022-10-28



Anna Jama-Rodzeńska 
Instytut Agroekologii i Produkcji Roślinnej, Zakład Uprawy Roślin, UP Wrocław, pl. Grunwaldzki 24A, 50-363 Wrocław https://orcid.org/0000-0003-4864-7367
Bernard Gałka 
Instytut Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska, Wydział Przyrodniczo-Technologiczny, Uniwersytet Przyrodniczy we Wrocławiu, Polska https://orcid.org/0000-0002-4555-9460



License

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 

Agronomy Science has adopted a self-archiving policy called blue by the Sherpa Romeo database. From 2021 authors can self-archive article postprints and editorial versions (under the CC BY 4.0 licence). Articles from earlier years (available under the CC BY-NC-ND 4.0 licence) can only be self-archived as editorial versions.


Most read articles by the same author(s)