Non-degradable polypropylene nonwovens are difficult to dispose and their utilization represents high economic costs. This study was conducted on lettuce cultivated during the spring and autumn seasons in the southern part of Poland to test biodegradable nonwovens as plant covers. Several nonwovens were developed from aliphatic-aromatic copolyesters (ACC), one without modifiers (SB48/11) and three with the addition of fatty acid dimers: two commercial variants (SB20/13, SB21/13) and one made from plant biomass (SB28/13). Nonwoven polypropylene (PP) fleece was included as a control cover. One week after covering with SB48/11, stomatal conductance (gs) increased in lettuce plants in parallel with higher transpiration rate (E) and sub-stomatal CO2 concentration (Ci) relative to the control, but differences in these parameters evened out in mature plants. In the spring, degradable covers with their higher mass per unit area, caused a decrease in marketable yield of lettuce compared to the control PP, resulting mainly from the deterioration of plant quality and lower mean weight per head. In the autumn season, yield was statistically not different between treatments. Yield of spring lettuces was 78% higher compared to the autumn cultivation period. Plants grown under SB20/13 had the lowest dry weight and L-ascorbic acid, while plants under SB21/13 had the highest dry weight and L-ascorbic acid content. Plants under SB28/13 had higher chlorophyll a content. Generally, no effect of covers was noted for carotenoid concentrations. The content of dry weight, L-ascorbic acid, and carotenoids were higher in plants harvested in spring, while no effects of crop season on chlorophyll level were observed. All tested biodegradable nonwovens are a potential substitute for standard polypropylene in autumn trials, but for spring covering unit weight of these materials should be reduced.


biodegradation; nonwoven covers; Lactuca sativa L.; yield; photosynthesis

Al-harbi, A.R. (2001). Growth and flowering of five lettuce cultivars as affected by planting date. J. Veg. Crop Prod., 7(1), 23–36. DOI: 10.1300/J068v07n01_05
Bohlman, G.M. (2005). General characteristics, processability, industrial applications and market evolution of biodegradable polymers. In: Handbook of Biodegradable Polymers, Bastioli, C. (ed.), Rapra Technology Limited, UK, 183–218.
Briassoulis, D. (2006). Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym. Degrad. Stabil., 91, 1256–1272. DOI: 10.1016/j.polymdegradstab.2005.09.016
Caruso, G., Conti, S., La Rocca, G. (2011). Influence of crop cycle and nitrogen fertilizer form on yield and nitrate content in different species of vegetables. Adv. Hortic. Sci., 25(2), 81–89.
Chen, Y., Tan, L., Chen, L., Yang, Y., Wang, X. (2008). Study on biodegradable aromatic/aliphatic copolyesters. Braz. J. Chem. Eng., 25(2), 321–335. DOI: 10.1590/S0104-66322008000200011
Dufault, R.J., Ward, B., Hassell, R.L. (2006). Planting date and romaine lettuce cultivar affect quality and productivity. HortScience, 41(3), 640-645. DOI: 10.21273/HORTSCI.41.3.640
Epps, H.H., Leonas, K.K. (2000). Pore size and air permeability of four nonwoven fabrics. Int. Nonwovens J., 9(2), 18–22. DOI: 10.1177/1558925000OS-900215
Francke, A., Majkowska-Gadomska, J. (2008). Effect of planting date and method on the chemical composition of radicchio heads. J. Elementol., 13(2), 199–204.
Golubkina, N., Kekina, H., Caruso, G. (2018). Foliar biofortification of Indian mustard (Brassica juncea L.) with selenium and iodine. Plants, 7(4), 80. DOI: 10.3390/plants7040080
Ibarra-Jiménez, L., Munguia-López, J.P., Lozano, A.J., Zermeño-González, A. (2005). Effect of plastic mulch and row covers on photosynthesis and yield of watermelon. Aust. J. Exp. Agric., 45(12), 1653–1657. DOI: 10.1071/EA04140
ISO 20200:2004. Plastics – Determination of the degree of disintegration of plastics materials under simulated composting conditions in a laboratory-scale test (PL-EN 20200).
Jursík, M., Hamouzová, K., Soukup, J., Šuk, J. (2016). Effect of nonwoven fabric cover on the efficacy and selectivity of pendimethalin in lettuce. Sci. Hortic., 200, 7–12. DOI: 10.1016/j.scienta.2015.12.054
Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S.E., Singh, S.P. (2007). Compostability of bioplastic packaging materials: an overview. Macromol. Biosci., 7, 255–277. DOI: 10.1002/mabi.200600168
Kaleri, A.H., Kaleri, A.A., Kaleri, G.A., Wahocho, N.A., Kaleri, S.H., Kaleri, M.K., Kaleri, A.A., Kaleri, S.H., Rajput, S.Y. (2016). Effect of sowing dates on the growth and yield of lettuce (Lactuca sativa L.). Int. J. Res. Rev., 1264(7), 2617–2619.
Kalisz, A., Kostrzewa, J., Sękara, A., Grabowska, A., Cebula, S. (2012). Yield and nutritional quality of several non-heading Chinese cabbage (Brassica rapa var. chinensis) cultivars with different growing period and its modelling. Korean J. Hortic. Sci. Technol., 30(6), 650–656. DOI: 10.7235/hort.2012.12108
Kalisz, A., Grabowska, A., Sękara, A., Capecka, E., Libik, A., Sulak, K., Jurkow, R. (2019). Biodegradable polymers as floating row covers in field production of radish. Chil. J. Agric. Res., 79(2), 243–256. DOI: 10.4067/S0718-58392019000200243
Kalisz, A., Sękara, A., Gil, J., Grabowska, A., Cebula, S. (2013). Effect of growing period and cultivar on the yield and biological value of Brassica rapa var. narinosa. Not. Bot. Horti. Agrobot. Cluj Napoca, 41(2), 546–552. DOI: 10.15835/nbha4129138
Kasirajan, S., Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agron. Sustain. Dev., 32(2), 501–529. DOI: 10.1007/s13593-011-0068-3
Kijchavengkul, T., Auras, R., Rubino, M., Ngouajio, M., Fernandez, T. (2008). Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: Field study. Chemosphere, 71(5), 942–953. DOI: 10.1016/j.chemosphere.2007.10.074
Kobryń, J. (2001). Effect of planting date on pak choi and butterhead lettuce growth, yield and quality characteristics. Ann. Warsaw Univ. Life Sci. – SGGW, Horticult. Landsc. Architect., 22, 43–48.
Kołota, E., Adamczewska-Sowińska, A., Czerniak, K. (2010). Yield and nutritional value of Swiss chard grown for summer and autumn harvest. J. Agric. Sci., 2(4), 120–124.
Koudela, M., Petříková, K. (2008). Nutrients content and yield in selected cultivars of leaf lettuce (Lactuca sativa L. var. crispa). Hort. Sci. (Prague), 35(3), 99–106.
Kunicki, E., Grabowska, A., Sękara, A., Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hort., 22(2), 9–13.
Kyrikou, I., Briassoulis, D. (2007). Biodegradation of agricultural plastic films: A critical review. J. Polym. Environ., 15(2), 125–150. DOI: 10.1007/s10924-007-0053-8
Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 603, 591–592. DOI: 10.1042/bst0110591
Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., Stoniker, F.,Yu,L., Kendall, P. (2007). Total phenolic content and DPPH· radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT Food Sci. Technol., 40(3), 552–557. DOI: 10.1016/j.lwt.2005.09.007
Ngouajio, M., Auras, R., Fernandez, R.T., Rubino, M., Counts Jr., J.W., Kijchavengkul, T. (2008). Field performance of aliphatic-aromatic copolyester biodegradable mulch films in a fresh market tomato production system. HortTechnology, 18(4), 605‒610. DOI: 10.21273/HORTTECH.18.4.605
Olle, M., Bender, I. (2010). The effect of non-woven fleece on the yield and production characteristics of vegetables. Agraarteadus, 1, 24–29.
Ozturk, M.K., Nergis, B., Candan, C. (2016). A comparative study on air permeability properties of multilayered nonwoven structures. Int. J. Min. Met. Mater., 10(12), 1510–1513.
Pavlou, G.C., Ehaliotis, C.D., Kavvadias, V.A. (2007). Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate AACumulation in lettuce. Sci. Hortic., 111, 319–325. DOI: 10.1016/j.scienta.2006.11.003
Reinink, K. (1993). Relationship between effects of seasonal change on nitrate and dry matter content in lettuce. Sci. Hortic., 53, 35–44. DOI: 10.1016/0304-4238(93)90135-D
Rekowska, E., Jurga-Szlempo, B. (2011). Influence of growing date and plant density on the yield of endive (Cichorium endivia L.). Acta Sci. Pol. Hortorum Cultus, 10(1), 13–21.
Siwek, P., Libik, A., Zawiska, I. (2013). The impact of biodegradable nonwoven fabric covers on the field and quality of overwintering onions. Acta Sci. Pol. Hortorum Cultus, 12(6), 3–11.
Siwek, P., Libik, A., Zawiska, I. (2012). The effect of biodegradable nonwovens in butterhead lettuce cultivation for early harvest. Folia Hort., 24(2), 161–166. DOI: 10.2478/v10245-012-0020-2
Uklańska-Pusz, C.M., Adamczewska-Sowińska, K. (2011). Yield and nutritive value of selected endive cultivars grown for spring and autumn harvest. Folia Hort., 23(2), 111–118. DOI: 10.2478/v10245-011-0017-2
Vroman, I., Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344. DOI: 10.3390/ma2020307
Waterer, D. (2010). Evaluation of biodegradable mulches for production of warm-season vegetable crops. Can. J. Plant Sci., 90(5), 737–743.
Zawiska, I., Siwek, P. (2014). The effect of biodegradable direct covers on the root development, yield and quality of cucumber. Folia Hort., 26(1), 43–48. DOI: 10.2478/fhort-2014-0004

Published : 2021-04-28

Kalisz, A., Sękara, A., Grabowska, A., Sulak, K., Capecka, E., Libik, A., Jurkow, R., & Kulig, B. (2021). PERFORMANCE OF BIODEGRADABLE FLOATING DIRECT COVERS IN THE FIELD PRODUCTION OF BUTTERHEAD LETTUCE DURING SPRING AND AUTUMN TRIALS. Acta Scientiarum Polonorum Hortorum Cultus, 20(2), 93-106.

Andrzej Kalisz
Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland  Poland
Agnieszka Sękara 
Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland  Poland
Aneta Grabowska 
Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland  Poland
Konrad Sulak 
Department of Synthetic Fibers, Institute of Biopolymers and Chemical Fibers, Sklodowskiej-Curie 19/27, 90-570 Łódź, Poland  Poland
Ewa Capecka 
Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland  Poland
Andrzej Libik 
Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland  Poland
Rita Jurkow 
Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Kraków, Poland  Poland
Bogdan Kulig 
Department of Agroecology and Plant Production, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Kraków, Poland  Poland

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Articles are made available under the CC BY-NC-ND 4.0 International (recognition by authorship, non-commercial use, no dependent works).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.